NOUVEAUX MÉMOIRES
DE LA
SOCIÉTÉ IMPÉRIALE DES NATURALISTES
DE MOSCOU.

TOME XIV
formant le Tome XX de la collection.

LIVRAISON I.

Avec 7 planches.

MOSCOU.
IMPRIMERIE DE L'UNIVERSITÉ IMPÉRIALE.
Strastnoï Boulevard.
1879.
NOUVEAUX MÉMOIRES

DE LA

SOCIÉTÉ IMPÉRIALE DES NATURALISTES

DE MOSCOU.

TOME XIV
formant le Tome XX de la collection.

Avec 7 planches.

MOSCOU.
IMPRIMERIE DE L'UNIVERSITÉ IMPÉRIALE.
Strastnoï Boulevard.
1879.
DIE

KALKBRÜCHE VON MJATSCHKOWA.

EINE MONOGRAPHIE DES OBEREN BERGKALKS.

VON

H. Trautschold.

SCHLUSS.

Mit 7 Tafeln.

Nouv. Mémoires. Tome XIV.
Syringopora Goldfuß 1826.

Harmodites Fischer 1828.

Der Polypenstock besteht aus langen, unregelmäßigen cylindrischen, fast parallelen oder wenig divergirenden Polypenzellen, welche durch kurze horizontale Röhren mit einander in Verbindung stehen. Die Böden sind trichterförmig.

Syringopora parallelula Fisch.

Taf. 1, fig. 1. a — e.

„ „ radians Fisch. Notice etc. p. 20. f. 2. 3.

Syringopora geniculata Phill. Geol. of Yorksh. p. 201. t. 2. f. 1.

„ Portlock. Londonderry p. 337. t. 22. f. 6.

„ Milne Edw. Haime Brit. foss. cor. p. 163. t. 46. f. 2. 4.

Syringopora mult attenuata McChesney Hayden Final report Nebraska pag. 144. t. 1. f. 5.

Ein Haufwerk von fast parallelen schwach divergirenden Röhren von beiläufig vier bis fünf Centimeter Länge und 1/4 Millimeter Durchmesser, durch Anwachsstreifen deutlich geringelt und schwach hin und hergebogen, manchmal auch sich verzweigend. Oft berühren sich die Röhren und fließen an der Berührungsstelle in einander oder sind durch kurze und dünne horizontale Röhren miteinander verbunden. Die Röhren laufen dicht nebeneinander her, und der sie trennende Zwischenraum ist in der Regel nicht breiter als 1/4—1 Millimeter. Die trichterförmigen Böden sind nicht ganz regelmässig in einander gesetzt, sie sind bald flacher, bald tiefer, und erstere erscheinen namentlich bei den Verbindungsröhren, in welche sich die beiderseitigen Böden hineinziehen. Dieser Umstand und
die hier und da auftretenden Nebenböden lassen die Polyphenzelle im Durchschnitt blasig erscheinen. Es erscheinen daher auch im Querschnitt die dünnenförmigen Böden nicht regelmässig ineinander geschachtelt, sondern oft kraus gefaltet.

Coscinium Keyserling.

Blattförmige, gelappte Ausbreitungen, aus zwei auf einander liegenden Schichten bestehend, deren freie Flächen in Quincunx geordnete Poren zeigen, so dass man auf dem Querbruch die nach beiden Seiten hin zweizeilig verteilten, röhrigen Zellen sieht.

Coscinium sellaeforme nov. sp.

Taf. 1. fig. 2. a — c.

Coscinium Michelinia Prout.

Geol. survey of Illinois II. p. 414. t. 22. f. 4:

Taf. I, fig. 3. a—b.

Prout beschreibt diese Bryozoe, welche in Amerika in dem Bergkalk von Warsaw, Illinois und in den unteren Lagern der St. Louis-Gruppe (was unserem oberen Bergkalk entspricht) vorkommt, als eine andere Gegenstände überziehende; in grösere oder kleinere, mehr oder weniger sechseckige, schalenförmige Vertiefungen getheilte Kolonie. Die schalenförmigen Vertiefungen sind durch ziemlich scharfe Leisten von einander getrennt, diese verlaufen nicht immer gradlinig, sondern sind manchmal hin und her gekrümmt. Auf der Oberfläche der erwähnten Vertiefungen sind, wie es scheint, die Zellemmündungen unregelmässig verstreut; sie sind länglich cirund oder oval, mit sehr wenig aufgeworfenen Rändern. Das einzige Exemplar, welches mir vorliegt, stammt von Mjatschkowa, und überreidet einen Stachel von Archaeocidaris rossica: es ist nicht von vorwurfsfreier Erhaltung, doch treten die charakteristischen Merkmale genügend hervor, um die Bestimmung als eine gesicherte betrachten zu können.

Echinoidea.

Cidaridae.

Archaeocidaris McCoy
Echinoerinus Ag.
Palaecidaris Desor.

Die Charakteristik des genuss Archaeocidaris lautet bei McCoy (British Palaeozoic fossils pag. 125): „Drei oder mehr Reihen Interambulacralplatten, von denen jede einen grossen, sitzenförmigen, durchbohrten, von einem erhabenen Ring umgebenen Knoten trägt,

Archaeocidaris rossica v. Buch. sp.

Cidarites rossicus Vern. Géologie de la Russie pag. 17. t. 1. f. 2. 1843.
Echinoerinus Doncalionis Eichw. Leth. ross. t. 1. pag. 652.

Taf. II, fig. 1. a — 1.

Stacheln und Interambulacralplatten kommen im Bergkalk von Mjatschkowa zu Milliö-
nen vor, doch ein ganzes gut erhaltenes Perisoma ist noch nicht gefunden worden. An dem vollständigsten bisher aufgefundenen Exemplar, das ich habe abbilden lassen, ist indessen die Erhaltung noch hinreichend, um die ungefähre Zahl der Interambulacralplatten zu schätzen, auch ist eine kleine Anzahl von Ambulacralplatten zu sehen, deren Reihen-

Alles, was von diesem Fossil beschrieben ist, stammt von Mjatschkowa, wo Inter-ambulacralplatten und Stacheln in sehr grosser Menge vorkommen.
Perischochinidae.

Lepidesthes Meek & Worthen.

Allgemeine Form subsphäroidal. Interambulaeralfelder verhältnismässig schmal, die Platten dachziegelförmig übereinander liegend und zwar von unten nach oben und von der Mitte nach aussen. Ambulaeralfelder sehr breit, die gleichförmigen kleinen Platten legen sich dachziegelförmig auf einander von oben nach unten; centrale Ambulaeralporen befinden sich zwei auf jedem Plättchen. Lepidesthes unterscheidet sich von dem nächst verwandten Genus Melonites durch die gleichartigen Ambulaeralplatten und durch die centrale Stellung der Poren. Bei Melonites sind die Ambulaeralfelder auch sehr breit, aber die Poren haben seitliche Stellung, auf der einen Hälfte des Feldes sind sie links- auf der anderen rechtsständig; dadurch entsteht in der Mitte des Feldes eine porenlöse Zone, welche bei Lepidesthes nicht vorhanden ist.

Lepidesthes laevis nov sp.

Die Auffindung eines Repräsentanten aus dem seltenen Geschlechte Lepidesthes im Bergkalke von Mjatschikowa verdanken wir dem eifrigen jungen Geologen S. N. Nikitin. Freilich sind es nur Bruchstücke des perisoma, welche vorliegen, aber sie gestatten doch die sichere Bestimmung des genaus nicht nur, sondern auch der Art. Was an Bruchstücken vorhanden ist, stimmt nämlich ausgezeichnet zu der Beschreibung und Abbildung, welche Meek und Worthen von Lepidesthes Corveyi in der Geological survey of Illinois vol. III p. 525, und vol. 5. t. 16. l. 2. gegeben haben. Es müssen auch bei unserer Species ungefähr sechs Reihen Interambulaeraltafeln und ungefähr zehn Reihen Ambulaeraltafeln (gegen die Mitte des perisoma’s hin) vorhanden, und die Ambulaeralfelder müssen also auch mindestens anderthalb mal breiter gewesen sein als die Interambulaeralfelder, also ganz wie bei Lepidesthes Corveyi. Die Ambulaeralplättchen sind auch ebenso von zwei centralen Poren durchbohrt, sind sechseckig und liegen dachziegelförmig übereinander, ganz wie bei der genannten amerikanischen Species. Ueberhaupt unterscheidet sich L. Corveyi nur dadurch von der russischen Art, dass die Ambulaeralplatten mit Würzchen bedeckt sind, von denen bei unseren Bruchstücken keine Spur vorhanden ist; ausserdem liegen die Poren der Ambulaeralplatten zwar in der Mitte, wie es in der Beschreibung bei Meek und Worthen heisst, aber da die Platten sich dachziegelförmig decken, so kommt
ein Theil der Platte so unter die deckende zu liegen, dass die Poren dicht an die Deckplatte stossen, was bei L. Coreyi nicht der Fall zu sein scheint, da auf der Zeichnung, i. e. von Meek & Worthen alle Porenpaare in der Mitte stehen. Abgesehen von diesen wenig bedeutenden Verschiedenheiten ist die Aehnlichkeit im Bau und in der Form bis ins Einzelne ausserst frappant, und muss um so mehr Wunder nehmen, als die beiden in Rede stehenden Fossilien aus so weit von einander entfernten Orten stammen.

Asteriidae.

Palaeaster Hall.

Palaeaster montanus Stschur. sp.

Asterias montanus Stschur.

Навєстія Навір. обш. любіт. естествоznанні.

Taf. II, t. 2. a. b.

Nouv. Mémoires, Tome XIV.

Das Fossil stammt aus den mergeligen Zwischenschichten der Kalkkörnchen von Mjatschkowa.

Calliaster mirus nov. genus et species.

Taf. II, f. 3- a — b 1 4.

Beide Bruchstücke sind nach innen gekrümmt, zeigen also vorzugsweise die Rückenplatten. Fig. 3 nur eine Reihe dieser Platten, während bei Fig. 4 beide Reihen erhalten sind. Diese Platten sind convex, breiter und höher in der Mitte, an dem Aussenende mehr oder weniger abgestumpft, an dem Innenseite gabelig ausgearbeitet, auf der Oberseite warzig, auf der Unterseite mit schrägen Vertiefungen versehen. Diese Platten ruhen auf zwei Reihen senkrecht gestellter Platten, deren oberer Rand fast eben, der

1) Simonowitsch, Ueber einige Asterioiden der rheinischen Grauwacke pag. 21, t. 3, f. 2.
3) Geological survey of Ohio. pag. 66. t. 4. f. 1.
4) Quenstedt. Asteriden und Echiniden pag. 71. t. 92. f. 29.
untere aber convex ist, wie Fig. 3, f. zeigt. Von oben gesehen sieht die Platte beinahe wie der Schenkelknochen eines Säugethiers aus, da das Innendrucke verdickt ist, und eine auspringende Verdickung in die Gabelbucht der obren Platten passi. In der Mitte zieht sich von der einen Seite nach der anderen eine gekrümte Rinne, die bei manchen Platten so tief ist, dass man zu der Vermuthung geführt wird, die Platte bestehe aus zwei getrennten Theilen, was sich indessen nicht bestätigt. Die untere convexe Kante ist warzig. Von den Seiten ist die eine vertieft, die andere hockerig erhöht, wie Fig 3, f. zeigt. Kleinere Platten wie Fig. 3, g. sind mehr elliptisch als die grösseren. Nach dem Füllergange hin ragen die unteren Platten unter den kürzeren oberen etwas hervor, und an sie lagern in dichtgedrängter Reihe convexe linealische Ambulacralplatten, die nach dem Füllerkanal hin abgerundet sind (fig. 4, h.). Eine vierte Art von Platten sind stern- und kreuzförmige. Sie befinden sich auf den beiden kleineren Bruchstücken, und stehen wahrscheinlich auf der Mitte des Rückens; die Oberseite ist mehr oder weniger warzig, die Unterseite glatt und nur mit wenigen Vertiefungen versehen (f. 3, c. d.).

Nach der Analogie entsprechen die Platten f. 3, f. und g. den Adambulacralplatten des Orcaster reticulatus, die länglichen Plätchen f. 3, h. den papillae (s. Quenstedt, Asteriden und Euceriden t. 90, f. 12. und t. 94. f. 81.). Die sternförmigen Platten sind bei Palaeasters Dyori Meek aus dem Silur von Nordamerika beobachtet als Bedeckung der Rückenseite (Meek, Geological survey of Ohio p. 58. t. 1. f. 2. c.)

Stenaster Billings.

Urasterella McCoy.

Kein Discus; Strahlen linealisch, lanzettförmig oder petaloïdisch, die Rinnen begränzt von soliden länglichen oder viereckigen Adambulacralplatten; Mundplatten dreieckig und zehn an der Zahl; zwei Reihen Ambulacralporen. Rückenseite der Scheide und der Strahlen mit kleinen, warzenartigen Platten, die nicht dicht aneinander gepasst sind.

Stenaster confluentens Trld.

Taf. II, fig. 5.

haben sie einen gekrümmten Fortsatz, auf dessen oberer Seite je ein Paar spindelförmiger Körper aufgesetzt sind; dieselben sind glatt und keine Vertiefungen daran wahrscheinlich. Neben der centralen linke liegt jederseits eine Art Leiste, aus zylindrischen Kalkstücken bestehend, welche zwei leichte Einschnürungen haben, und dicht aneinander gestossen.

Einige Ähnlichkeit hat unser Stenaster mit St. grandis Meek aus dem amerikanischen Stihn (Geological survey of Ohio 1. t. 3. bis t. 7.), an dem auch die Rückenseite ähnlich mit wabenähnlichen Tafeln besetzt, wo aber jede Adamantacralplatte nur eine Fühlerplatte zu tragen scheint, auch die Arme weit länger sind.

Crinoidea.

Poteriocrinus Miller.

Der Kelch ist kreiselförmig- schalen- oder topförmig, und besteht aus 5 Basalplatten, 5 Parabasalplatten (von denen drei gleich, und die beiden an die Analplatten gebrachten ungleich sind) und 5 Radialplatten, zwischen zwei der letzteren ist eine unbestimmte Zahl von Analplatten eingeschoben. Auf die Radialplatten des Kelches sind noch zwei oder mehr Platten aufgesetzt, welche die Fortsetzung der Radialplatten bilden, aber schon als Theile der sich ein- oder mehrfach gabelnden Arme zu betrachten sind. Die Kelchplatten sind glatt.

Der Stiel ist cylindrisch, mehr oder weniger mit Ranken besetzt und glatt. Der Kanal ist cylindrisch oder fünfeckig. Die Gelenkflächen der Stielglieder sind mit radialen Furchen versehen.

Poteriocrinus originarius Trönd.

Taf. III, fig. 1.

Das einzige Exemplar dieser Art, welches aus den Steinbrüchen von Karahitschejewo bei Kolumna stammt, hat eine Länge von zwei Decimeter; der Kelch hat eine Höhe von
24 Millimeter, der längste Arm ist fast 11 1/2 Centimeter lang und der Stiel ist in einer Länge von 6 1/2 Centimeter erhalten.

Poteriocrinus multiplex Trd.

Taf. III, fig. 2. Taf. IV, fig. 1.

P. " F. Roemer. Lethaea geognost. t. 40, fig. 11.

Die Gabelung der Arme ist entweder eine einfache oder eine doppelte, oder auch eine anderthalbfache, d. h. die letzte dachförmige Radialplatte giebt einer Theilung den Ursprung, die sich nicht weiter fortsetzt, oder aber die Arme theilen sich noch einmal, und aus dem Radialstamme entstehen vier Arme, oder aber der eine der nach der Bifurcation entstandenen zwei Arme theilt sich wieder und der andere nicht, d. h. der Ra-
dialstamm trägt nur drei Arme. Die zweite Gabelung folgt sehr schnell der ersten, denn auf jeder Dachfläche der letzten Radialplatte liegen nur eine oder zwei rechtwinklige Tafeln, auf welche dann wieder eine fünfzählig Stele folgt, die jederseits wieder einen Arm trägt.

An einer Stelle des Kelches befinden sich zwischen zwei Radialplatten und an die Parabasalplatten stossend die Analplatten, in der Regel vier, von denen indessen auch gewöhnlich nur drei sichtbar sind. Sie sind unregelmäßig sechseckig und die unteren größer als die oberen.

Auf der Innenseite der Arme läuft eine Rübe, welche ihre Entstehung den Kerben der Glieder verdankt. Die durch den Kerb zweilappig gewordenen Glieder sind auf der einen Seite dicker, d. h. der eine mehr zugespitzte Lappen ist dicker und daher auch höher, während der gegenüberstehende mehr abgerundete Lappen dünner ist und niedriger liegt. Nun wechseln die Glieder so, daß ein Glied mit einem dicken Lappen auf dem dünner des vorhergehenden ruht, und an den dicken Lappen ist jedesmal das Fiederchen bedeckt.

sein, welche durch Abreibung vermittelst der Fiedern eine rundliche Form erhalten haben, als auch Theile der zum Kelche gehörigen Organe. Die sägeartigen Fiedern haben jedenfalls nicht allein dazu gedient, die zur Nahrung dienenden Gegenstände zu erfassen, sondern auch sie zu zermalmen und sie dem Kelche zuzuführen, wo dann vielleicht der Verdauungsprozess schliesslich vor sich gegangen ist.

Verwandte Arten unseres P. multiplex finden sich in Westeuropa, namentlich in dem englischen Bergkalk, aber es lässt sich Identität nirgends nachweisen. Nach den Abbildungen bei Austin (P. Austin und T. Austin jun., monograph of fossil Crinoidea 1843) t. 10, fig. 3 und fig. 6, sind P. conicus Phill. und P. impressus Phill. nahestehende Arten. Es sind indessen nur die Kelche abgebildet, und da die Gliedflächen der Radialplatten anders gezeichnet und sogar anders gestaltet sind, so lässt sich annehmen, dass hier verschiedene Arten vorliegen. P. conoides de Kon. steht auch nahe, doch genügt das von de Koninck in seinem vortrefflichen Werke (Recherches sur les Crinoïdes) t. 1, fig. 8, abgebildete Kegelfragment nicht zur Constatirung vollständiger Übereinstimmung.

P. multiplex hat sich in gewissen mergeligen Zwischenschichten des Bergkalks von Mjatschikowa nicht selten gefunden.

Poteriocrinus bijugus Tred.

P. bijugus Trautschold Bullet. de Moscou 1867.

Taf. III, fig. 3.

Der Kelch ist schalenartig niedrig, die 5 Basalplatten sind verhältnissmässig klein,

Hydriocrinus Trautschold.

Die dem Genus Hydriocrinus am nächsten stehenden Genera sind Poteriocrinus und Scaphiocrinus Hall. Von dem ersteren unterscheidet sich Hydriocrinus durch nur eine Reihe der eigentümlich gestalteten Radialplatten der Arme, von dem anderen durch seinen fünfeckigen Stiel.
Hydriocrinus pusillus Trud.

H. pusillus Trantschold Bull. de Moscou 1867.

Quenstedt Petref. Deutschland's IV. p. 527. t. 108. f. 47.

Taf. III, fig. 4. Taf. IV, fig. 2.

Was McCoy in seiner Synopsis als *Poteriocrinus gracilis* beschreibt (t. 25. f. 11—13), ist sehr ähnlich unserem *H. pusillus*, doch gehört er der neuen Gattung *Scaphiocrinus* an, da er einen runden Stiel hat. Die *Scaphiocrinus*-Arten des nordamerikanischen Bergkalks (Geolog. survey of Iowa) unterscheiden sich meist von unserem *Hydriocrinus* durch rundere Form des Kelchs.

Cromyocrinus Trud.

(*χρόμυον* Zwiebel.)

Der Kelch ist kugel- oder saekförmig. Basalplatten sind fünf, fast von regelmässig

Die Gattung Cromyocrinus hat ihren Platz in der Nähe von Cyathocrinus und Poteriocrinus. Von beiden unterscheidet sie sich durch die sphäroidale Form des Kelchs, durch die eigentümliche Form der Radialplatten, und durch die Grösse und Stellung der Analplatten.

Cromyocrinus simplex Trtd.

Taf. III, fig. 6, 7, 8.

Poteriocrinus muciformis (Fisch.) Eichwald Lethaea rossica l. p. 588.

Cromyocrinus simplex Trautschold. Crinoideen des jüngeren Bergkalks Bullet. de Moscon. 1867.

Der Kelch ist fast kugelförmig, und erreicht bei grösseren Exemplaren einen Durchmesser von drei Centimeter. Er ist nicht immer symmetrisch ausgebildet, sondern auf der
zur Anhaftung des Capulus geeignet haben, im amerikanischen Bergkalk ist) findet sich auf

Kellen von Platyergus ein ähnlicher Gastropode (Platyergus infundibulum), ebenfalls

in grosser Zahl, und es scheint, dass auch dort sich dieses Thier von den Auswurftstoffen

der Crinoideen genährt habe. Dort sind auch noch andere Arten von Crinoideen von der-

gleichen Thieren behaftet gefunden worden. Zu bemerken ist noch, dass der Capulus para-
siticus immer nur auf den Analplatten angeheftet ist, und zwar ohne Ausnahme mit seiner

Vorderseite nach dem Inneren des Kelches gerichtet.

Die fünf Arme des Cr. simplex sind einfach, die Armglieder sind also einfach die

Fortsetzung der Radialplatten. Sie sind anfangs ziemlich breit, und die dicke Seite liegt

wie gewöhnlich auf der dünner der vorhergehenden Platte. Die pinnulae sind kräftig, und

namentlich sind die unteren Glieder derselben kurz und dick.

Der Stiel von Cr. simplex ist cylindrisch, der Kanal ebenfalls mit fünf lappenartigen

Ausbuchungen. Die Stielglieder sind ausser glatt und etwas convex. Ihre Gelenkfläche ist

mit Furchen versehen, welche von Rande bis zur Hälfte des Radius reichen, und nach

dem Rande hin am tiefsten sind. Die Stiele tragen nicht selten Narben von Cirren, die
gleichfalls am Rande einen Kreis von Furchen tragen. Die Stellung dieser Narben ist un-

regelmässig, an einem Gliede finden sich zuweilen mehrere, an vielen gar keine. Wenn

sich mehrere an einem Gliede befinden, stehen sie zuweilen dicht beisammen, zuweilen

weit von einander getrennt. Der Stiel scheint, so lange er noch ein Theil des lebenden

Thiers war, eine gewisse Weichheit gehabt zu haben, denn in meinem Besitze befinden

sich mehrere Stielstücke, an welchen spiralförmige Einschnürungen von nicht geringer Tiefe

vorhanden sind, die augenscheinlich von einem fremden Körper herrühren, der sich um den

Stiel herumgewunden hat. Ausserdem finden sich nicht selten kleine Löcher, die möglicher

Weise von Bohrmuscheln herrühren; auch Anschwellungen sind häufig und da an den Stielen

vorhanden, welche auf einen krankhaften Zustand oder sonst eine äussere Verletzung deuten.

Die jungen, kleinen Individuen dieser Crinoidee, die stellenweise in den mergeligen

Zwischenschichten des Bergkalks von Mjetschkowa nicht ganz selten sind, haben ein von den ausgewachsenen Thieren verschiedenees Aussehen. Der kleine geringelte Stiel sitzt in einer Vertiefung des Kelches; die Basalplatten sind noch gar nicht zu sehen, die Parabasalplatten treten als ein Kreis von fünf Halbkugeln hervor, welche durch tiefe Rinnen von den übrigen Platten getrennt werden; die Radialplatten bilden halbe Hemisphären, und zwischen ihnen treten drei Analplatten hoch hervor. Alle diese halbkugelförmigen Massen hängen noch untereinander zusammen, und getrennte Platten sind noch nicht vorhanden; die Trennung erfolgt also erst in vorgerückterem Alter. Diese Kelche der jungen Thiere haben entschiedene Ähnlichkeit mit Brombeeren; bei manchen Exemplaren zeigen die einzelnen Knöpfchen furchenartige Unebenheiten, diese gehören ohne Zweifel einer anderen, sogleich zu beschreibenden Spezies derselben Gattung an.

Cromyocrinus geminatus Trld.

Quenstedt Petref. Deutschlands IV. p. 543. t. 109. f. 5.

Taf. III, fig. 5, 6.

Cr. geminatus unterscheidet sich von Cr. simplex vorzugsweise durch die 5 Armpaare, während Cr. simplex nur fünf einfache Arme hat. Die Form des Kelches ist bei Cr. geminatus weniger kugelförmig als bei Cr. simplex, sondern mehr sack- oder papflörmig. Endlich sind die Radialplatten bei Cr. geminatus anders geformt als bei Cr. simplex.

Cromyocrinus ornatus Trl.

Taf. III, fig. 9, 10.

Ich hatte in meiner früheren Arbeit (Cricnoideen des jüngeren Bergkalks 1867) beide Arten Cr. geminatus und Cr. ornatus mit einander vereinigt, da beide Formen in einander übergehen, aber da in der neueren Zeit eine grössere Spaltung der Arten beliebt ist, so habe ich es für zweckmässig gehalten, die eine in zwei Arten zu zerlegen, obgleich eigentlich eine der beiden Arten nur die Rolle einer Subspezies spielt.
Gr. ornatus ist früher wiederholt in den mergeligen Schichten der Kalkbrüche von Mjatschkowa gefunden; ist aber wie alle übrigen Crinoideen dort seltener geworden.

Phialocrinus Eichwald.

Verwandte der Gattung Phialocrinus sind Cyathocrinus, Poteriocrinus. Hydriocrinus, Trachicrinus. Bei Cyathocrinus sind die Radialplatten des Kelchs nach Koninck mit ein-

*) Труды второго съезда русскихъ естествоиспытателей въ Москве 1869, по отъду по минералогіи etc. pag. 7.

**) Eichwald, Lethaea rossica I. p. 573. t. 31. f. 27.
ander verwachsen, der Stiel cylindrisch und die allgemeine Form des Kelchs eine andere. Bei Poteroerinus ist ebenfalls die Form des Kelchs eine andere, zum Kelch selbst gehören drei Analplatten, und der Stiel ist ebenfalls cylindrisch. Bei Hydrioerinus ist zwar der Stiel fünfeckig, aber zum Kelch gehören ebenfalls drei Analplatten, und die Form des Kelchs ist tigeldartig. Bei Scaphoerinus sind nur fünf Radialplatten der Arme vorhanden, übrigens auch anders geformte, und der Stiel ist rund.

Phialocrinus patens Trd.

Taf. IV, fig. 4.

Phialocrinus urna nov. sp.

Taf. IV, fig. 5.

In dem Nachlasse des vorstorbenen Moskauer Geologen Auerbach befindet sich eine Zeichnung eines von Mjatschkowa stammenden Crinoideenkelches (aus der Sammlung des *Nouv. Mémoires. Tome XIV.*

4
Grafen Czapsky), welche ich nicht unbeachtet lassen kann, da sie genau genug ausgeführt ist, um die Einzelheiten des Baues erkennen zu lassen. Der Kelch gehört auch der Gattung Phialocrinus an, und unterscheidet sich von der vorhergehenden Spezies namentlich durch die allgemeine, topf- oder urnenartige Gestalt, während Ph. patens niedergerückt schalenartig ist. Diese Verschiedenheit der Form wird bedingt durch die viel größeren Basalplatten, welche sich in aufrechter Stellung befinden, während sie bei Ph. patens völlig horizontale Lage haben. Die sechseckigen Parabasalplatten sind flach und nicht gewölbt wie bei Ph. patens, die Radialplatten ebenfalls in mehr aufrechter Stellung als bei Ph. patens. Der Stiel ist fünfeckig (nach dem Abdruck zu urtheilen) wie bei Ph. patens, und die zweite Radialplatte hat gleichfalls dieselbe Form, wie bei der genannten Species. Ob eine Dachplatte als Träger von zwei Armen vorhanden ist, wie bei Ph. patens, lässt sich aus der Zeichnung nicht ersehen.

Stemmatoocrinus Trd.

Die zehn Arme haben ganz die Einrichtung von Enerinus; sie bestehen aus Plättchen von der Form eines länglichen Fünfecks, die mit ihren Spitzen in einander greifen. Bei jedem Armepaar greift das linke Arme über das rechte; am rechten Arme greift das untere rechte Plättchen über das linke, und so fort.

Das genus Stemmatocrinus (στήματος die Krone) steht der Bildung der Arme nach der Gattung Enerinus nahe, weicht aber durch die Stellung der Kelchplatten von denselben ab. Bei Enerinus nämlich stehen die Platten der drei ersten Plattenkreise in einer Linie übereinander, alle Platten sind also eigentlich Radialplatten, welche schliesslich einen Doppelarm tragen. Bei Stemmatocrinus aber wechselt der zweite Plattenkreis mit dem ersten, und die Form der Platten des ersten und des zweiten Kreises ist ebenfalls völlig abweichend.
Stemmatocrinus cernuus Trö.

Taf. III, fig. 12

Der Stiel ist bei dem vorliegenden Exemplar dicht am Kelch abgebrochen. Wie aber aus dem Umrisse der Bruchfläche zu ersehen ist, war der Stiel rund. Die mit ihren breitsten Flächen aneinandergestossenden Radialplatten erster und zweiter Ordnung bilden am Rande des Kelchs Concavitäten, die sich wiederholen an der Berührungsstelle der oberen Ränder der Radialplatten der Arme und den Armen selbst. Die Arme bestehen aus 33 Flächenpaaren, welche auf der Linie in der Mitte, wo sie in einander greifen, eine Wölbung bilden, so dass die Arme das Ansehen haben, als seien sie auf der Mittellinie mit zwei Reihen von Höckern versehen. Die Arme spitzen sich allmählich zu, und neigen sich zusammengeschlagen nach einer Seite über. Die Kelchplatten sind glatt.

Von näher verwandten Formen findet sich, selbst in den neuerdings erschienenen Werken über den amerikanischen Bergkalk nichts.
Forbesiocrinus de Kon. et Lehon.

Forbesiocrinus incurvus Trd.

Taf. III, fig. 11. Taf. IV, fig. 3.

Vier von den fünf Basalplatten stellen niedrige Fünfecke dar, deren senkrechte Seiten so kurz sind, dass sie fast als Dreiecke erscheinen: die fünfte Basalplatte ist fast dreimal so gross als die übrigen, und stellt ein hohes Viereck dar, dessen untere seitliche Ecken abgestumpft sind. In die Winkel, welche durch die Basalplatten gebildet werden, sind fünf Reihen von je drei Radialplatten eingesetzt, von denen die oberste Platte dachförmig ist. Die unterste von diesen drei Platten ist siebeneckig, die obere breiteste Seite des Siebenecks ist bogig eingesenkt: mehr oder weniger eingesenkt sind auch die beiden

POLYPI

Cyathophyllinae.

Cyathophyllum Goldfuss.

Bothrophyllum nov. subgenus.

Bothrophyllum conicum Fisch. sp.

arihina Fisch. l. c. p. 153. t. 30. f. 4.

bicena Fisch. l. c. p. 153. t. 30. f. 5.

Clisiophyllum Dana.

Das Polypengewebe einfach und kreiselförmig. Die Sternlamellen reichen bis zum Centrum, und bilden dort eine Pseudocolumella, die nicht gewunden ist. Unterscheidet sich von Cyathaxonia durch Abwesenheit der Fossula.

Clisiophyllum cavitum nov. sp.

Taf. V, fig. 2. a. b.

Der Polypenstock stellt einen umgekehrten, stumpfen Kegel dar, welcher mit einer dünnen Epitheca bedeckt ist. Durch die etwas nach aussen vortretenden Sternlamellen erscheint die Aussenfläche des Stockes längsgerippt. Die concentrische Streifung ist dagegen weniger markirt. Ausserdem finden sich auf der Aussenfläche zahlreiche warzenformige Erhöhungen oder Zipfel (auf der Hälfte des einen Exemplars 12 an der Zahl), die möglicher Weise der Species eigenhändig sind. Sternlamellen sind 30 vorhanden (an dem am vollständigsten erhaltenen Individuum), sie fallen schräg fast bis zur Mitte der Polyphenhülle ab, und schneiden dann senkrecht ab, um fast wie ein Cylinder die aus der Mitte aufsteigende Pseudocolumella zu umgeben. Das aus Lamellen zusammengesetzte Säulchen ist ungefähr drei Millimeter hoch, während der Stock selbst eine Höhe von zehn Millimetern und am Rande einen Durchmesser von 15 Millimetern hat. Ich habe gesagt,
dass die Sternlamellen nach innen schräg abfallen, aber dasselbe ist der Fall nach aussen hin, indem die Lamellen vom Ausseurand an schräg nach oben in einer Breite von 3—4 Millimeter ansteigen, und sich dann erst steil nach der Mitte hinabsenken. Zwischen die Hauptlamellen setzt eine gleiche Zahl Lamellen zweiten Ranges ein, die nur eine Breite von beiläufig 5 Millimeter haben, während die Hauptlamellen 10 Millimeter breit sind. Ich habe dieser Art den Namen cavum beigelegt, weil das Säulchen frei aus der Tiefe des Polypenstocks aufragt, und von einem hohlen Raume umgeben ist, denn die Lamellen stehen von dem Säulchen um mindestens einen Millimeter ab.

Das Fossil stammt aus Mjetschkowa, wo es indessen selten genug vorkommt.

Zaphrentis Rafinesque et Clifford.

Zaphrentis sp.

Lonsdaleia McCoy.

Lithostroton (pars) Fleming.

Lonsdaleia floriformis Fleming sp.

Taf. V, fig. 3. a—f. fig. 4, a. b. fig. 5, a. b.

Erismatolithus Madreporites (floriformis) Martin. Petref. Derb. t. 40. f. 3, 4 und 144. f. 5. 1869.

Nouv. Mémoires. Tome XIV.
Stylina compound Parkinson Organic remains t. 10. f. 5. 1822.
Cyathophyllum expansum Fischer de Waldheim Oryctogr. de Moscow t. 31 f. 1. p. 155.
Cyathophyllum papillatum ibidem t. 31 f. 4. p. 155.
Astraea mammillaris ibidem t. 31. f. 2, 3. p. 151.
Astraea emarcida Lam. ibidem. t. 31. f. 5. p. 154.
Astraea pentagona ibidem p. 154.
Hydnophora Esperi ibidem t. 34. f. 4. p. 157.
Strombodes conaxis McCoy Brit. pal. foss. p. 102. t. 3. B. f. 4.
Lonsdalea floriformis Milne Edwards & Haime Brit. fossil corals p. 205. t. 43. f. 1. 2.

Anordnung, was, wie Milaschewitsch *) meint, auf eine spirale Struktur des Baues deutet. Die Spirale tritt nur deutlich hervor an der Spitze der Säule, und hat dort zur Aufstellung des Geschlechtscharakters „aus zusammengedrehten Lamellen bestehend“ Veranlassung gegeben. Indessen sind diese Lamellen durchaus nicht bloss zusammengedreht, sondern so mit einander verwachsen, dass sich auf dem Säulchen Rippen gebildet haben, die der ganzen Länge der columella nach senkrecht und ziemlich parallel eineinander aufsteigen, und erst an der Spitze sich spiral aufwinden, indem hier noch dicht unter der Spitze kurze Zwischenrippen einsetzen. Im Längsschnitt lassen sich überhaupt bei guten Exemplaren vom Rande zur Mitte drei Schichten unterscheiden: die äussere grossblasige Schicht mit nach unten geneigten Böden, die mittlere mit horizontalen kürzeren Böden, und die Columella mit spitz konischen Böden, welche nach oben in eine spiral gewundene Spitze ausgeht.

McCoy giebt in seinen British palaeozoic fossils eine gute vergrößerte Abbildung unseres Fossils im Längsschnitt (l. 3. B. f. 4. a.), aber etwas zu schematisch, namentlich fehlt die Mittellamelle, an die sich die spitzen mantelförmigen Kegellamellen anlegen. In der Abbildung des Dünstchilis bei Milaschewitsch (l. e. t. 2. f. 1, 2.) tritt zwar die Mittellamelle deutlich hervor, aber die spirale Anordnung der Kegellamellen springt doch nicht so in die Augen, wie der Autor es durch seine Zeichnung hat beweisen wollen.

In Bezug auf Fischer’s Oryctographie ist noch zu bemerken, dass die fig. 4. t. 31, welche im Text als Cyathophyllum papillatum aufgeführt ist, in der Erklärung der Tafeln Astraea mammillaris genannt ist.

Es scheint überhaupt, dass Fischer meist verkieselte Exemplare vor sich gehabt hat, und die Verwechslung mit Astraea ist daher eine sehr verzeihliche, da die Astraeen aus dem Korallenkalk von Nattheim bei schlechter Erhaltung in der That unserer verkieselten Lonsdaleia sehr ähnlich sehen. Was Fischer als Hydnophora Esperi l. e. abbildet, ist sehr wahrscheinlich auch eine Lonsdaleia floriformis, deren grossblasiges Gewebe rings um die columella zerstört ist; die dichteren Reste der letzteren sind dann später durch Verkieselung kommenden Jahrtausenden erhalten worden. Korallenbänke, welche aus Lonsdaleia floriformis und der folgenden Species gebildet sind, finden sich namentlich bei Podolsk und Kolomna.

Lithostrotion.

Polypenstock zusammengesetzt, durch seitliche Knospung sich vergrössernd. Die einzelnen Polypengehäuse mit einer vollständigen Epitheca bekleidet, und bald an den Seiten frei, bald durch die Aussenwände voll mit den angrenzenden verwachsen. Die Stern-
lamellen reichen bis an die Columella, diese ist griffelförmig an der Spitze oder blattförmig. Das Polypengehäuse zeigt in der Mitte deutliche Böden, nach aussen deutliche Querlamellen.

Lithostroton Stylaxis.

Taf. V, fig. 6. a — c.

Petalaxis Portlocki Milne Edw. & Haime Brit. foss. corals p. 204. t. 38. f. 4.
Stylaxis MacCoyana ibidem p. 453. t. 12. f. 5.

— 37 —

Lithostroton flexuosum Trd.

Taf. V, fig. 7. a. b.

Die Koralle kommt in den oberen Lagen des Bergkalks bei Podolsk vor.

Lithostroton gorgoneum nov. sp.

Taf. V, fig. 8. a — c.

Von den freien Lithostroton-Arten, d. h. von den Arten, deren Aussenwände nicht mit den angrenzenden Polypenstücken verwachsen sind, habe ich nur eine Art gefunden, und zwar eine, die ich nicht mit den schon beschriebenen identifizieren kann. Lonsdale hat in Russia and the Ural mountains I pag. 598 — 600. vier solcher unverbundenen Arten unter dem Gattungsnamen Lithodendron beschrieben. L. costatum hat starke Längsrippen, von denen sich bei unserer auf manchen Röhren keine Spur zeigt, auf anderen ist die Streifung schwach. L. fasciculatum Phillips zeigt seitlich häufig vereinigte Stücke und hat blasiges Gewebe, was bei unserem nicht der Fall ist. Graf Keyserling bildet (Pelschera t. 3. f. 1.) ein Lithodendron concameratum ab, welches mit unserer Art, nach der Abbildung zu urtheilen, vollständig übereinstimmen würde, wenn er nicht im Text sagte (p. 169.), dass die Röhren durch viele Quersprossen miteinander verbunden wären, was bei L. gorgoneum gar nicht zu beobachten ist. Bei L. annulatum Lons. ziehen sich die Diaphragmen wellig in die Höhe, was ebenfalls bei L. gorgoneum nicht der Fall ist. Lithodendron sexdecimale Phill. zeigt sich verästelt, was bei unserer Species
ebenfalls nicht vorkommt. Fischer von Waldheim bildet in seiner Oryentographie zwei Ar-
ten von Spirulina ab, sulcata und denticulata, welche Bronn im Nomenclator palaeonto-
logicus für Fragmente von Crinoideenschilden hält; ich bin der Meinung, dass es wahr-
scheinlich Röhren von Lithostrotion sind, t. XII, f. 4. möglicher Weise sogar eine Röhre
von L. gorgoneum, indessen giebt die Beschreibung (p. 127.) dieser Voraussetzung kei-
nerlei weitere Grundlage oder Anhalt.

Lithostrotion gorgoneum ist folgendermassen characterisirt: Bündel von sehr stark hin
und her gebogenen durcheinander geschlungenen Röhren; die 2 bis 2½ Millimeter im
Durchmesser haltenden Röhren sind cylindrisch, schwach durch Anwachsstreifen geringelt
und glatt; wenn sie mit Längsrippen versehen erscheinen, so ist das nur eine Folge der
Verwitterung, da die Rippen von den Sternlamellen herrühren. Auf dem Querschnitte der
Röhren zeigen sich 16 Sternlamellen, die alle bis zur Columella reichen, zwischen diese
Hauptlamellen sind 16 kurze eingesetzt, die nur bis zum Drittel des Halbmessers reichen,
und deren Enden durch senkrechte Lamellen zu einer Art Röhre miteinander verbunden
sind. Ist der Zwischenraum zwischen dieser Röhre und der äusseren Wand mit Kalk aus-
gefüllt, wie das oft der Fall ist, so gewinnt es den Anschein, als wenn die äussere Wand
sehr dick wäre. Im Längsdurchschnitte erscheinen die Röhren durch fast horizontale wenig
gewölbte Querwände in Zellen getheilt, aber diese Horizontalität erstreckt sich nur bis zu
der erwähnten Innenwand, und von dort ziehen sich die Diaphragmen nach unten, um
sich in einem Bogen an die Außewand anzulegen. Zwischen der Innenwand und der
Columella sind senkrechte Lamellen fast nie vorhanden. Die Columella stellt einen dünnen,
und wie es scheint, hohlen Cylinder dar.

Hydnophora Fischer von Waldheim.

Der Gründer dieser Gattung sagt in seinen „Recherches sur les Hydnophores 1810“,
dass diese Koralle steinige, krustenförmige, rundliche oder lappenartige Ausbreitungen
bilde, deren Oberfläche mit blättrigen Sternen besät sei und dass das Centrum der letzte-
ren mehr oder weniger hervorstehe. Er fügt hinzu, dass die Asträen sich von den Hyd-
nophoren durch das höhle und eingesenkte Centrum unterscheiden. Diese Charakteristik
ist in der Oryentographie du gouvernement de Moscou desselben Verfassers dahin vervoll-
ständigt, dass es heisst: „Das mehr oder weniger erhöhte Centrum trägt strahlenförmige
Lamellen.“ Fischer stellt das Genus Hydnophora zwischen die Männdrinen und Asträen.

Lamarck hielt seine Monticularia für identisch mit Fischer's Hydnophora, und mach-
te ihm den Vorwurf *) , dass er wissentlich dafür einen anderen Namen adoptirt habe.

*) Lamarck, histoire naturelle. p. 219.
Fischer dagegen wies nach '), dass die Figuren Lamarek's von Monticularia nach seinen Zeichnungen von Hydnophora angefertigt waren, und dass in Lamarek's Werken erst in den Jahren 1812 und 1816 von Monticularia die Rede gewesen, während die erste Beschreibung der Hydnophora schon 1807 in Fischer's Museum Démidoff erschienen wäre. Milne Edwards & Haime folgen insofern dem Beispiel Lamarek's **), als sie ebenfalls Hydnophora und Monticularia zusammenwürfen, die sie in ihre Abtheilung der Aporosa stellen, und sie der Unterabtheilung der Astrotinae confluentes anreihen, ohne indessen, wie es scheint, die echte Hydnophora gesehen zu haben. Die Charakteristik der Gattung passt denn auch nicht auf Hydnophora, da sie ihr dicke Kelchwände zuschreiben, die nicht vorhanden sind und ihr die Columella absprechen, die immer vorhanden ist. Milne Edwards und Haime führen aus dem Silur von Wenlock eine Labeechea (Monticularia) an, die sie zwischen Monteculina und Halysites stellen, woraus gleichfalls hervorgeht, dass ihnen die Form unserer Hydnophora unbekannt war.

Lonsdale (Geology of Russia I. p. 625.) nennt die Hydnophora Fischer's ebenfalls Monticularia ***)), doch ist das von ihm untersuchte und mit Hydnophora identifizierte Fossil ein silurisches aus dem Gouv. Kowno, das wegen mangelfafer Erhaltung keine nähere Vergleichung zulässt.

Bonn stellt Hydnophora zu seinen Eporosa in die Abtheilung der Astrapidae und zwar an das Ende der Lithophyllacae, gleichsam als Übergang zu den Faviacea, „deren Stücke massig sind, ohne Reihenstellung der bei der Selbsttheilung unterscheidbar bleibenden Becher“ Das Genus ist bei ihm ähnlich wie bei Milne Edwards & Haime charakterisiert „Wandhügel in Höcker abgeteilt.“

Nach meinen Untersuchungen gehört die Gattung Hydnophora zu den Cyathophylli-

*) Oryctographie de Moscou.
**) British fossil corals p. XXXVIII.
***) Monticularia Sternbergi Fischer.
****) Lethaea rossica I. p. 440, 441.
†) De Fromont giebt, wie es scheint, Conoseresis Edw. & Haime für Hydnophora aus. (Paléont. franç. terr. crétacé t. 115 et 113.) Man sieht daraus, was für eine haarsträubende Confusion zum Theil noch in der Korallenliteratur herrscht!
nen Milne Edwards & Haime's, und zwar in die Nähe der Gattung Lithostracion. Es ist eine zusammengesetzte Koralle, welche durch Vereinigung ihrer Stücke Ueberzüge und lappenartige Decken bildet, wenn auch nicht in so grossen Maassstabe wie bei Lithostracion und Lonsdaleia. Die Gattung unterscheidet sich von den genannten Genera auf den ersten Blick durch die Abwesenheit der Kelchwände. Im Querschnitte zeigen sich also nicht die polygonalen Figuren wie bei Lithostracion und Lonsdaleia. Im Gegenentcil treten, namentlich bei verwitterten Stücken kreisrunde Wände hervor, innerhalb welcher die Sternlamellen sich befinden. Eine griffelartige Columella ist vorhanden, die aber nur eine Fortsetzung einer oder zweier Sternlamellen ist, eine für die Cyathophyllinen charakteristische Bildung. Ausserhalic der oben erwähnten kreisrunden oder besser cylindrischen Wände ist weitausgeglich blasiges Gewebe, meist horizontal gelagert, welches die Individuen mit einander verbindet, so dass keinerlei Gränze zwischen derselben vorhanden ist. Im senkrechten Durchschnitt sehen die Stücke den Lithostracion-Colonien sehr ähnlich, da die Innen- und Aussenwände sich hier nicht scharf unterscheiden, aber im Querschnitt liegen die Sternchen der Sternlamellen in dem blasigen Gewebe zerstreut, und treten selbst die Innenwände nicht scharf im Umriss hervor. Die Oberfläche der Kolonie ist uneben; und zwischen den Sternen zeigen sich reihenweise Vertiefungen, welche auf die Zwischenräume der Lamellenblasen weisen. Die von Fischer beschriebenen Erhöhungen entstehen nur durch Verwitterung, indem die cylinderförmigen Innenwände der Verwitterung länger widerstehen, als das blasige Gewebe und selbst die Sternlamellen. Die Stücke bilden im Allgemeinen dünntere Ueberzüge als Lithostracion z. B. von 3 Centimeter, doch erreichen sie ausnahmsweise, wie es scheint, auch die Dicke von einem Decimeter.

Hydnophora Humboldti Fisch,

Oryctogr. p. 158. t. 33. f. 1.

Taf. VI, fig. 1. a — e.

Alle Stücke von Hydnophora, welche ich in dem Moskauer Bergkalk gesammelt habe, kann ich nur auf eine einzige Art beziehen, und da von den in Fischer's Oryctographie abgebildeten Hydnophoren nur die obengenannte ein deutlicheres Bild gibt, so habe ich ihr diesen Namen erhalten. — Die Sternchen bestehen aus zehn Lamellen; die Columella steht nach oben hin frei, so dass die Septa nicht ganz an ihre Spitze heranreichen. Die Sternchen sind unregelmässig über die Oberfläche zerstreut, und stehen 4 — 6 Millimeter von einander entfernt. Der Durchmesser der Sternchen d. h. der inneren Lamellencylinder überschreitet nicht zwei Millimeter. Die Oberfläche zwischen den Sternen ist uneben, und auf derselben sind hier und da vier bis fünf parallele Eindrücke bemerkbar, die
zuweilen von den Sternen auszugehen scheinen. Die Sterncyliner steigen nicht regelmä-
sig senkrecht auf, da ein senkrecht geführter Schmitt sie nicht gleichmässig durchschlä-
det. Das blasige Zwischengewebe ist horizontal gestreckt und zieht sich an den Ster-
cylinern ein wenig herunter. Das Lumen der Bläsen ist im senkrechten Sinne ½ bis ⅓
Millimeter, in horizontalem Sinne 1 — 2 Millimeter. Die Sternlameilen sind ebenfalls durch
horizontale Böden mit einander verbunden.

Sind die Sternchen ausgewittert, das blasige Gewebe und die Sterncyliner verkiesel-
t, so erscheint die Koralle als ein Fossil, dessen rauhe Oberfläche von grossen rund-
en Öffnungen (den Enden der Röhren) durchbohrt ist; die Ränder dieser Löcher er-
heben sich über die übrige Oberfläche und von ihnen gehen nach allen Seiten strahlen-
förmige Vertiefungen aus, ganz so wie es Oryetographie t. 33. f. 2. abgebildet ist, und was
Fischer von Waldheim H. Freieslebeni genannt hat. H. Esperi t. 34. f. 4 desselben
Wurks gauht der Verfasser selbst für eine Astrea (d. h. nach unserer jetzten Aufla-
sung ein Lithostrotion) halten zu müssen. (l. c. p. 157.). H. Cuvieri t. 34. f. 2. gehört
vielleicht auch zu Lithostrotion. H. Moli (t. 34. f. 1.) und H. Henningi (t. 34. f. 3.)
dürften wohl auch nur verschiedene Verritternungsstufen der H. Humboldt sein. Ob H.
Sternbergi (t. 34. f. 5.) mit dichter stehenden Sternchen eine selbstständige Species ist,
will ich dahingestellt sein lassen, mir ist dergleichen bis jetzt noch nicht zu Gesicht
gekommen. Das (t. 6. f. 1. a. b.) abgebildete kleinere Exemplar stammt aus dem Fusu-
linenkalk von Mjatschkowa, das zweite grössere (t. 6. f. 1. c.) stammt auch von Mjatsch-
kowa und befindet sich in der Sammlung des Herrn Wischnjakow.

Rhizopoda.

Die Rhizopoden des Bergkalks sind in der neuesten Zeit mehrfach monographisch
bearbeitet worden, so von Brady und von V. v. Müller; ich verweise namentlich auf die
derzügliche Abhandlung des letzteren *), und gehe hier nur der Vollständigkeit wegen kur-
zen Bericht über die im Moskauer Bergkalk vorkommenden Geschlechter und Arten.

Nummulina. d'Orb.

Schale frei, spiral, gleichseitig oder fast gleichseitig, regelmässig, scheiben- und
linsenförmig. Öffnungen umfassend, der letzte den vorhergehenden umschliessend und sich
in denselben allmählich verlierend. Die Scheidewände sind durch eine dicht an der Wand
der vorhergehenden Windung befindlichen Öffnung mit einander verbunden.

*) Спирально-спиральная формация каменноугольного известняка России В. Медора. С.-Петерб. 1873 г.

Nouv. Mémoires. Tome XIV. 6
Nummulina antiquior Rouill.

Taf. VI, fig. 3.

Orobius antiquior Eichw. Lethaea rossica l. p. 353.

" eaequalis Eichw. l. c. p. 353. t. 22. f. 16.

Fusulina eaequalis Brady l. c. p. 419.

Nummulina antiquior Brady Carbonif, and Permian Foraminifera p. 147.

Eichwald hat aus N. antiquior eine neue Gattung (Orobius) gemacht, und diese in zwei Arten gespalten. Weder zu der einen Operation noch zu der anderen war Grund vorhanden, da das in Frage stehende Fossil die wesentlichen Merkmale der Gattung Nummulina hat, und die mehr oder weniger grosse Ungleichseitigkeit des Fossils auch die Trennung in zwei verschiedene Species nicht rechtferigen kann. Mir will scheinen, dass die mehr oder weniger excentrische Stellung der grossen Primordialkammer oder ihre nicht vollkommen sphärische Form eine stärkere Convexität der einen Seite des Gehäuses und eine dem entsprechende Verflachung der anderen herbeiführen könnte. In meinem Besitze befindet sich ein grüsseres horizontal gespaltenes Exemplar, das vollkommen mit dem von Rouillier l. c. f. 74. abgebildeten übereinstimmt. Kleinere Individuen sind noch

*) Die mir zu Gebot stehenden Exemplare stammen aus der Sammlung des verstorbenen Fahrenkohl; seit der ersten Entdeckung scheint kein neuer Fund dieses Fossils gemacht worden zu sein.
mehrere vorhanden, auch sie zeichnen sich durch grosse Primordialkammern aus, doch tritt bei keinem die Ungleicheitigkeit so stark hervor, wie in Rouillier's Fig. 69.

Fusulina Fischer.

Fusulina cylindrica Fischer.

Taf. VI, fig. 2. a. b.

" " " Oryctographie de Moscou p. 126. t. 18. f. 1 — 5.

" " " depressa Fisch. ibidem p. 126. t. 13. f. 6 — 11.

" " " cylindrica? Meek Palaeont. California 1. p. 4. t. 2. f. 2.

" " " graciilis? Meek Palaeont. of Calif. p. 4. t. 2. f. 1.

" " " cylindrica? Geinitz. Carb. and Dyas in Nebraska p. 71. t. 5. f. 5.

" " " ? Hayden Final report Nebraska p. 140. t. 1. 2. 5. 7.

Dieses Fossil bildet in Mjatschkowa eine der untersten Bänke des Bergkalks und wird von den dortigen Arbeiten gorusch (Erbsen) genannt. Bei Kolomna an der Oka und bei Nasarewo an der Kljasma finden sich ebenfalls blossgelegte Schichten. Die Erhaltung der Fusulinen in dem Gestein von Mjatschkowa ist keine besonders günstige, da die Schalen von einem Kalksinter bedeckt sind, der auch teilweise in die Gehäuse eingedrungen ist, und dadurch oft einen klaren Einblick in die innere Struktur des Gehäuses behindert. Die beste Erhaltung zeigen, so weit mir bekannt, innerhalb des Gouvernements Moskau,

Was in der Geologie de la Russie d'Europe von Murchison, Verneuil, Keyserling als Fusulina cylindrica beschrieben und abgebildet ist (II. p. 16. t. 1. f. 1), wird von Möller zu einer besonderen species erhoben, die er nach Ehrenberg's Vorgang (Alveolina montipara Mikrogeologie t. 37. C. f. 5.) Fusulina montipara nennt. Diese Art kommt nicht im Bergkalk von Mjetschkowa vor.

Bradyina v. Möller.

Museum Eichwald
Lituola Brady
{ zum Theil.

Bradyina nautiliformis v. Möller.

Спирально-свернутые фораминиферы каменноуг. извест. России 1878.

Taf. VI, fig. 5. a. b. c.

Endothyra Phillips.

Endothyra crassa Brady.

A monograph of carbon. and permian Foraminifera p. 97. t. 5. f. 15. 17.

Endothyra crassa Möller. Спирально-свернутые фораминиферы т. 4. f. 2. т. 12. f. 4. a. b.

Fusulinella Möller 1877.

Melonia, Borelis, Alveolina Ehrenb. Fusulina Abich, Schwager, Brady.

Freies, symmetrisches, spindel-kugel- oder linsenförmiges Kalkgehäuse. Vollständig

Fusulinella sphaeroidea Ehrenb. sp.

Taf. VI, fig. 4.

" constricta ibidem f. 5. 6.

" labyrinthiformis ibidem XI. f. 3.

" Palaeosphaera ibidem XI. f. 7. 8.

Fusulina sphaeroidea Brady. Notes of a group of russian Fusulinae t. 18. f. 7. 8. 21.

" princeps ibidem p. 417. t. 18. f. 5. 6.

Fusulinella Bradyi v. Möller.

Спирально-свёрнутая фузулины p. 173. t. 5. f. 5. t. 15. f. 2. a. b.

Borelis Palaeolophus Ehrenb. Mikrogeologie t. 37. XI. f. 4. 5.

" Palaeophacus. Ehrenb. ibid. t. 37. XI. f. 6.

Fusulina aequalis Brady. Notes on a group of russ. Fusulinae p. 418. t. 18. f. 10—

Bigenerina d'Orbigny.

Gehäuse frei, regelmässig, länglich, aus zahlreichen Kammern gebildet, die früheren in zwei alternirenden parallelen Reihen, die spätere einreihig, gerade oder gekrummt. Öffnung einfach oder labyrinthisch. Oberfläche rauh.

Bigenerina mitrata nova sp.

Taf. VI, fig. 6. a. b. c.

Scyphia sp.
Taf. VI, fig. 7. a. b.

Plantae.
Sagminaria calcicola Trd.

Im letzten Jahre ist noch eine Mergelplatte in meine Hände gekommen, welche ebenfalls Abdrücke einer fucoiden Meeresalge trägt. Es sind bandartige, dicht nebeneinanderliegende und wenig radial auseinandergehende Blätter, welche sich nach unten zu zu einer breiteren Blattfläche vereinigen. Die Erhaltung ist indessen doch nicht so, dass eine nähere Bestimmung zulässig wäre, und müssen zur eingehenderen Beschreibung weitere Funde abgewartet werden.

Nachtrag.

Während der Bearbeitung des vorliegenden Werkes sind im oberen Bergkalk noch mehrere Fossilien gefunden worden, die, theils neu, theils in vollständiger Erhaltung, verdienen, noch zur Vervollständigung des Ganzen aufgenommen zu werden. Ich habe sie daher abbilden lassen, und gebe ihre Beschreibung, indem ich nicht versäumen werde, die Stellen in den beiden ersten Theilen der Abhandlung anzugeben, auf welche sich das Neue oder Vervollständigte bezieht.

Pisces.

Edestus Leidy.

Edestus protopirata Trd.

Taf. VI, fig. 8. a — c.

Dieser Zahn ist der erste dieser Gattung, der überhaupt in Europa gefunden worden ist. McCoy hat einen Zahn von ähnlicher Grösse und ähnlicher Krone unter dem Namen Praetieladodus abgebildet und beschrieben (Brit. palaeoz. fossils t. 3. K. f. 11.), aber wie der Name schon andeutet, gehört dieser Zahn zu der Gruppe der Cladodi, da er eine flache ausgebreitete Wurzel hat. Die Krone unseres Edestus hat auch Ähnlichkeit mit Hemipristis serra Ag. und mit Carexarias, aber bei beiden Gattungen ist die Wurzel hockriger wie bei den Lama-Arten überhaupt, bei Edestus dagegen ist die Wurzel keilförmig und schneidig. Edestus minor Newb. (Geol. survey of Illinois II. p. 84. t. 4. f. 24.) ist noch mit einem Stück der Kinnlade behaftet, was leider bei unserer Species nicht der Fall ist. Die grösseere Hälfte der Wurzel ist bei unserem Fossil frei und ist in einer Alveola des Kiefers eingesetzt gewesen, die hintere Hälfte aber ist abgebrochen, und ist es...

Nouv. Mémoires. Tome XIV.

Romanovsky hat im Jahre 1853 (Bull. de Moscou. Ueber eine neue Gattung versteinerner Fischzähne) einen halbscharfen Zahn aus dem unteren Bergkalk von Podmo-koje beschrieben, welchen er Dierenodus Okensis genannt hat. Dieser Zahn gehört unzweifelhaft der Gattung Carcharopsis Ag. an, denn er hat die Cladodus-artige Wurzel, ist auf der einen Seite concav, auf der anderen eben, und steht dem Carcharopsis Wortenii (Geol. surv. of Illinois p. 69. t. 4. f. 14.) jedenfalls sehr nahe.

Polyrhizodus longus Tra.

[Taf. VI, fig. 9. 10.]

Cladodus divergens Trd.

Taf. VI, fig. 11.

Es kommen im Bergkalk von Mjatschkowa kleine Cladodus-Zähne vor, welche sich von den übrigen dadurch unterscheiden, dass der mittlere Zahn weniger gross ist, als bei den gewöhnlichen Cladodus-Zähnen, und dass die Nebenzähne nach aussen geneigt sind. Das abgebildete Exemplar stellt die typische Form dieser Art von Cladodus-Zähnen dar. Die beiden Aussenzähne sind fast so gross, wie der Mittelzahn, und stark nach aussen gekrummt; die kleineren Zwischenzähne sind auch nach aussen gekrummt, doch weniger als die Aussenzähne, und der Haupt- oder Mittelzahn geht senkrecht in die Höhe mit geringer Neigung nach hinten.

Poecilodus grandis nov. sp.

Taf. VI, fig. 13.

nach oben, so ist die linke Kante und die untere abgerundete zugeschärft, die rechte gerade vorlaufende abgerundet. Die Unterseite des Zahnes ist rauh von zahlreichen unregeelmäßigen Vertiefungen, überdies deutet ihre Beschaffenheit auf hohes Alter des Thieres, dem er angehörte. Dem ganzen Habitus nach steht unser Zahn dem im ersten Hefte dieser Abhandlung beschriebenen Poecilodus concha nahe, doch ist dieser viel kleiner, etwas gedreht und hat mindestens vier Furchen, ist überdies schmäler und meist mehr gewölbt. Ein anderer Verwandter ist Poecilodus sublaevis McCoy (Brit. palaeogr. fossils p. 640, t. 3. 7. f. 7. 8. 9.), der in der allgemeinen Form näher steht, aber geflügelt ist, und auch zahlreichere Furchen hat.

Poecilodus circinans n. sp.

Taf. VII, fig. 1.

Orodus cinctus Ag.

Poissons fossiles III. t. 11. f. 1 — 4.

Taf. VII, fig. 2.

Seit der Veröffentlichung des ersten Heftes dieser Schrift sind mehrere Exemplare dieser Spezies im Bergkalk von Mjatschikowa gefunden worden. Die Geschlechtscharaktere sind in diesen Zähnen sehr scharf ausgeprägt, indem sich in der Mitte des langgestreck-

Cymatodus nov. genus.

χυμαξ Welle.

Lange und dünne Zähne. Der obere Rand der Krone wellenförmig.

Cymatodus plicatulus n. sp.

Taf. VII, fig. 3.

Cranodus nov. genus.

χράνος Helm oder Zahn.

Cranodus zonatus n. sp.

Taf. VII, fig. 4.

Der in Rede stehende Zahn ist von Hrn. Dr. Zickendraht im dichten Kalk von Mjetschkowa gefunden worden.

Deltodus N. & W.

Deltodus incrassatus n. sp.

Taf. VII, fig. 5.

Die Zähne dieser Art sind jedenfalls paarig gewesen, denn nur an der scharf abgestützten Seite des vollständig erhaltenen vorliegenden Zahns konnte eine Nebenzahn Platz finden"). Der Zahn stellt ein stumpfwinkliges Dreieck dar; der vordere spitze Winkel und der stumpfe Winkel liegen an der abgestützten Fläche des Zahns, welche die Mittellinie des Fischbrachens bildete, der zweite spitze Winkel liegt nach aussen und seine Spitze ist abgerundet. Die Krone ist vollkommen flach und eben, mit nur einem wenig bedeutenden

*) Ganz analog den paarigen Zähnen von Callorhynchus oder Chimaera anastasis (Owen Odontography t. 28. f. 1.).
Eindruck in der Mitte *), nach der Hinterseite aber wölbt sie sich nach unten und schnei-
det mit einer gekrümmten Linie von der Wurzel ab. An dem unteren Rande dieser Wöl-
bung sind drei kleine Falten sichtbar, die namentlich deutlicher nach dem abgerundeten
Seitenende des Zahnes deutlicher hervortreten. Die vordere Spitze des Zahnes ist mit ei-
ner Drehung nach innen zu gleicher Zeit nach unten gewendet. Die äussere längste Seite des
Zahnes zeigt nahe der vorderen Spitze eine Vertiefung, innerhalb welcher der Rand auch
nach unten vortritt, der übrige Theil des Randes verläuft nach der abgerundeten Aussen-
spitze der Krone in horizontaler Ebene. Die Oberfläche der Krone ist glatt und glänzend.
Poren sind, vielleicht wegen des Erhaltungszustandes, nicht sichtbar. — Die Wurzel ist
an der abgestürtzten Innenseite des Zahnes frei von Gestein und zeigt gut im Querschnitt
die Krümmung des Zahnes, nach der Spitze hin ist sie nur zwei Millimeter breit, ver-
dickt sich aber nach hinten bis auf 5 Millimeter. Ebenso lässt dieselbe Seite des Zahnes
zu den allmähliche Verdickung des Kronenschmelzes von vorn nach hinten sehen. Die
Oberfläche der Wurzel ist porös und zeigt mehrere dem Unterrande derselben parallel
laufende Falten. Auf der Hinterseite liegt die Wurzel ebenfalls frei, sie ist dort vier Mil-
limeter dick, wird nach der Seitenkante hin schmäler und tritt an der Ecke selbst um drei
Millimeter vor, die ganze Randung der Ecke als ein breiter Rand umgebend.

Die neue Gattung Deltodus unterscheidet sich von Cochliodus durch die flache Krone.
Nach Agassiz ist Cochliodus zu einem halben Cylinder eingerollt, das ist bei Deltodus
durchaus nicht der Fall, aber auch nicht bei den Formen, welche ich im ersten Hefte
dieser Schrift unter den Namen Cochliodus triangularis (t. 18, f. 6.) und laminaris be-
schrieben habe. Aber diese letzteren Formen unterscheiden sich von Deltodus dadurch,
dass die Wurzel überall gleich dick ist, und dass eine breite Vertiefung sich von vorn
nacl hinten zieht. Nichts destoweniger ist die Verwandtschaft mit Deltodus eine nahe,
und die beiden genannten Arten sind auch als kleine Übergangsformen zwischen Coch-
lidus und Deltodus zu betrachten. Deltodus incrassatus stammt aus dem Bergkalk von
Mjatschikowa.

Tomodus novum genus.

Zusammendrückte längliche Zähne, Krone schneidig gekielt und zu einer erhöhten
Spitze auslaufend. Oberfläche porös, Wurzel ebenso zusammendrückt wie die Krone
grossmaschig porös.

Tomodus argutus n. sp.

Taf. VII, fig. 8.

Die Krone dieses Zahnes ist dreieckig, und hat die Form eines zusammendrückten
Kegels. Seiner ganzen Structur nach gehört der Zahn zu den Psammodonten, und ein von

*) Bei einem anderen Zahn derselben Art ist dagegen eine gut ausgeprägte Convexität nach der
Aussenseite hin vorhanden.
hinten nach vorn zusammengepresster Helodus-Zahn, der durch den Druck einen scharfen Kiel erhalten hätte, würde ungefähr so aussehen, wie unser in Rede stehender Tomodus. Die Krone ist auf der Hinterseite flach, nach vorn ist sie concav und zu einem scharfen vortretenden Kiel zugeschärft.

Dieser Kiel ist in seinem Verlauf wellig, während der untere Rand der Krone auf der Hinterseite nur eine Krümmung nach oben beschreibt und nur sehr wenig über die Wurzel vortritt. An der Spitze ist die Krone etwas abgerieben, und zeigt hier in Folge dessen sehr gut das poröse innere Gewebe derselben. Der Schmelz ist glänzend, wo die Verwitterung stärker eingewirkt hat, ist die Oberfläche wie mit kleinen feinen Würzchen bedeckt, während die Zwischenräume mit weisslicher Kalksubstanz erfüllt sind.

Die Wurzel, die weitmaschig porös ist und mit Schmelz bedeckt, ist noch stärker zusammengedrückt als die Krone 1), und stellt von vorn gesehen ein ziemlich regelmässiges Rechteck dar. Auf der Hinterseite bildet die Zahnsubstanz senkrechte leistenartige Vorsprünge. Bei dem einen Exemplare ist die Entfernung von unteren Vorderrande bis zur Spitze der Krone 5 Mm., die Höhe der Wurzel 4 Mm. Bei einem zweiten Exemplar ist die Höhe der Krone bis zur stark verwitterten Spitze 10 Millimeter, die Höhe der Wurzel, die sich nach unten zu keilförmig verdünnt auch 10 Mm. Auf diesem zweiten Individuum zeigt die Wurzel ausserdem noch eine in der Mitte der Wurzel der Länge nach verlaufende keilförmige Erhöhung.

Petalodus destructor N. & W.

Geological survey of Illinois II. p. 35. 1. 2. f. 1. 2.

Schon im ersten Hefte dieser Schrift ist ein Petalodus-Zahn, der stark gewölbte P. laevis beschrieben und abgebildet worden. Es sind seither noch mehrere Bruchstücke aufgefunden worden, die sich von jenem durch starke Abflachung unterscheiden; da zwei von ihnen nicht vollständig erhalten sind, so will ich hier nicht weiter auf ihre nähere Beschreibung eingehen, und verweise nur auf die Abbildungen, welche die Gestalt genau wiedergeben. Bei Fig. 14. a ist die Basis des Bruchstücks in kegelförmigem Umriß schwarz gelärbt. Fig. 13. a ist grau. Die oben erwähnte P. laevis ist ganz schwarz

1) Auf der Tafel ist die Wurzel, namentlich die Verdickung nach vorn viel zu stark gezeichnet.

Sandalodus N. & W.

Newberry & Worthen haben dieses neue Genus folgendermassen charakterisirt: „Mit
telgrosse und grosse, dicke und starke, fast dreieckige oder keulenförmige Zähne mit ei
nem oder zwei spitzen Enden. Sie sind gemeinhin etwas gewunden, schwach der Länge
nach gewölbt, stark der Quere nach. Die Oberfläche ist punktiert, Unterfläche concav, die
Krümmungen entsprechend der Oberfläche. Nach dem schmaleren Ende eine oder zwei
Furchen, die sich schräg über den Zahn ziehen, wie bei Cychlodus.“

Es kommen ähnliche in die Länge gezogene Zähne auch im Kalk von Mjatschkowa
vor. Es sind Zähne von unregelmässigem Umriss, mit verschiedenartigen seichten Ein
drücken, mitunter stark gewölbt, so dass sie in einem mir vorliegenden Exemplar fast cy-
lindrische Form haben. Dem ganzen Habitus nach schliessen sie sich eng an das Ge
schlecht Psephodus an, und unterscheiden sich wesentlich von diesem nur durch grössere
Längendimension. Wie mir scheint, eine schwache Stütze zur Aufrechterhaltung des neuen
genuss Sandalodus.

Psephodus minor n. sp.

Taf. VII, fig. 9—12.

Agassiz hat einem Zahn aus dem Irischen Bergkalk in litteris den Namen Psephodus
magnus beigelegt. Ich verdanke ein hübsches Exemplar dieser Zähne der Güte meines
Nouv. Mémoires. Tome XIV.

Das, was Meek and Worthen unter dem Namen Aspidodus crenulatus abgebildet und beschrieben haben (Geol. surv. of Illinois II, p. 92. 93. t. 8. f. 3 — 11.) ist wahrscheinlich auch nichts Anderes, als das, was Agassiz unter dem Namen Psphodus verstanden hat. Die Autoren des 6-ten Bandes der Geol. survey of Illinois sprachen sich auch darin aus (l. c. p. 419.), dass nach den Mittheilungen, welche sie von Lord Enniskillen erhalten, an der Identität der erwähnten irischen Formen und der amerikanischen (Aspidodous) nicht zu zweifeln wäre.

Chiastodus nov. genus.

γρατίς gekreuzt.

Chiastodus obvallatus nov. sp.

Taf. VII, fig. 19 — 22.

Der in Frage stehende schöne und vollständige Zahn ist 32 Millimeter hoch und 30 Mm. lang. Von vorn oder hinten gesehen bildet die ganze Krone einen Kegel mit einer Conenuität jederseits. Im Profil zeigt sich der Mittelkegel der Krone als stark nach hinten geneigt. Von oben gesehen zeigt der Rand der Krone eine Reihe von Vorsprüngen, auf
der Vorderseite acht, und auf der Hinterseite sieben. Diese Vorsprünge sind alle scharf
gekielt, da die von dem der Länge nach verlaufenden Mittelkiele sich herabziehenden
Seitenkiele auf diesen Vorsprüngen enden. Von diesen Vorsprüngen ist die Artbenennung
entnommen, da, von oben gesehen, die Krone wie von einer Reihe von Pallisaden umge-
ben erscheint. Der Schmelz der Krone ist punktiert, und zwar die Spitze des Mittelkegels
am stärksten; diese Punktiierung der Spitze aber ist wieder stärker an der Vorderseite als
an der Hinterseite des Kegels. Die Spitze des seitlich zusammengedrückten Kegels ist ab-
gerundet. Die Enden der Vorsprünge des Randes sind ebenfalls abgerundet. Die sehr po-
röse Wurzel nimmt nur die untere hintere Hälfte der Krone ein, und ist zehn Millime-
ter dick.

Der Zahn, welcher anscheinend aus dem Fusulinenkalk von Mjatschkowa stammt, ist
mir von Hrn. Dr. Zickendrath verehrt worden.

Arpagodus n. g.

Αρπαγόδος der Rechen.

Längliche Zähne mit einem Mittelkiele, von welchem sich Falten herabziehen wie bei
Orodus aber ohne kegelförmige Erhöhung in der Mitte. Auf der Vorderseite der Zähne
zahlreiche stumpf kegelförmige seitlich zusammengedrückte Vorsprünge, welche sich von
dem Kiel der Krone bis zu dem oberen Drittel der Wurzel ziehen.

Arpagodus rectangulus Trd.

Taf. VII, fig. 12.

Der Umriß des einzigen vorhandenen doch wohl erhaltenen Zahnes ist ein nicht
ganz regelmäßiges Rechteck. Die Krone nimmt auf der Vorderseite noch nicht ein Drit-
tel der Höhe des ganzen Zahnes ein, auf der Hinterseite dagegen fast die Hälfte. Die
Krone, so lang wie die Wurzel und etwas breiter, ist mit glänzendem Email bedeckt,
und gekielt. Der Kiel ist kraus gerunzelt und kleine Falten ziehen sich bis zum Drittel
der senkrecht abfallenden Hinterwand der Krone herab. Solcher unregelmäßiger vertheilter
Falten giebt es an unserem Zahn 16, von denen einige, ungefähr acht, stärker hervortre-
ten. Von diesen Falten ziehen sich ausserdem noch schwächere Erhöhungen bis zum Wur-
zelrande. Auf der Vorderseite der Krone dagegen ziehen sich von der First derselben
sechs seitlich zusammengedrückte kegelförmige Erhöhungen über den Wurzelrand weg bis
to einem Drittel der Wurzel, so dass diese Erhöhungen in zwei Hälfen getheilt werden,
indem die schwarze Gränzlinie, die Krone und Wurzel von einander scheidet, gerade über
die Gipfel der Kegel hinweg zieht, wie das auch in der Zeichnung t. VI, f. 12. a. gut
wiedergegeben ist. Die Erhöhungen der Vorderseite sind von fast gleicher Höhe, und be-
finden sich auch, ungleich den kleinen Falten der Hinterseite, in fast gleichen Abstände
von einander. Zu bemerken ist noch, dass sich auf der unteren, glatteren Hälfte der Hinter-
seite der Krone vier Längsstreifen befinden, die erst unter der Lupe deutlicher hervortre-
ten, und auf der Zeichnung nicht angegeben sind. Die Zwischenräume zwischen den ke-
gelförmigen Erhöhungen der Vorderseite sind vollkommen glatt, d. h. ohne jede Quer-
der Längsrunzelung. Die Wurzel, die, wie schon bemerkt, auf der Vorderseite viel höher
ist, als auf der Hinterseite, ist sehr porös, und in Folge der Verwitterung ist die Por-
osität wohl im gegenwärtigen Zustande bedeutender und augenfälliger, als im unverwitterten.
Der Zahn stammt von Gshel.

Ostinaspis coronata Trd.

Taf. VII, fig. 14. a. b.

Ich habe in dem ersten Hefte dieser Abhandlung drei Arten von Hautschildern be-
schrieben: Ostinaspis Barbotana, acuta und simplicissima; eine hübsche Form, der ich den
oben angeführten Namen gegeben, ist neuerdings aufgefunden, und habe ich sie auch ab-
bilden lassen. Ein Blick auf die Abbildung lässt erkennen, dass sich diese Art aufs schärfste
von den früher beschriebenen unterscheidet. Der Kegel des Schildchens unterscheidet sich
von den übrigen Arten durch sehr feine und dichte, aber scharfe Streifung, die von der
sechs- oder mehrfältigen Krone sich bis zum Unterrande hinabzieht. Die Krone selbst ist
unstreift und glatt einaillirt und endet in einer ziemlich scharfen Spitze. Fundort
Mjatshkowa.

Ich habe im ersten Hefte auch der Bemerkung Newberry’s und Worthen’s Erwäh-
nung gethan, dass wegen des scharfen Randes diese Hautschilder wahrscheinlich isolirt
gestanden hätten. Ein neuer Fund beweist indessen, dass dies nicht immer der Fall ge-
wesen, sondern dass diese Schilder auch miteinander verwachsen. Ein ziemlich grosses
Exemplar von O. Barbotana ist in meinem Besitz, das sehr innig mit einem kleineren In-
dividuum derselben Spezies verwachsen ist.

Ctenacanthus Agassiz.

Flossenstacheln von verschiedener Grösse, seitlich zusammengedrückt, mit leichter
Krümmung nach rückwärts gebogen. Die Vorderseite schmal und abgerundet. Die Hinter-
randen mit zwei Reihen kleiner, abwärts gerichteter Zähnchen besetzt. Die Seitenflächen
mit starken, fein gekerbten Längsrippen geziert.
Ctenacanthus triangularis Newberry.

Geol. survey of Ohio 1, p. 329. t. 36. f. 1.

Taf. VII, fig. 15.

Ich verdanke der Güte des Herrn N. P. Wischnjakov einen sehr schönen im Bergkalk von Mjatschkowa gefundenen Flossenstachel, der vollkommen übereinstimmt mit der oben genannten Species aus der Waverley group des Kohlenkalks von Ohio, welche sich nur durch seine etwas grössere Breite von unserem Flossenstachel unterscheidet. Der Ctenacanthus von Mjatschkowa ist sieben Centimeter lang, an der breitesten Stelle elf Millimeter breit. An der Basis sind dreizehn Längsrippen, deren kleinere obere Hälfte nicht crenulirt ist. Der Hinterrand ist in einer Länge von 2 1/4 Centimeter von 14 fast einen Millimeter langen Zähnchen besetzt. Der glatte Theil der Basis ist fein längsgestreift, so dass ungefähr vier Streifen auf die Breite einer Rippe kommen. Der Querschnitt ist nicht blossgelegt, aber doch lässt sich so viel sehen, dass der Flossenstachel von der Hinterseite tief concav ist, und dass die Form des Querschnitts nicht viel von der dreieckigen Gestalt des Ctenoplatys abweichen kann.

Euomphalus canaliculatus Trd.

Taf. VII, fig. 16. a — c.

Productus costatus Sow. var. depressus.

Taf. VII, fig. 17. a.—c.

Productus costatus de Vern. Russia and the Ural II. p. 268. t. 18. f. 15.

De Koninck Monogr. des genres Productus et Chonetes p. 92. t. 8. f. 3. t. 10. f. 3. t. 18. f. 3. 1847.

Davidson British carbonif. Brachiop. pag. 152. t. 32. f. 2—9. 1861.

Davidson Mon. of scot. carb. Brach. t. 2. f. 22 — 24.

var. James Hall Geolog. survey of Iowa p. 712. t. 28. f. 3. 1858.

Spirifer bisulcatus Sow.

Spirifer bisulcatus Sow. Min. Conch. t. 492. f. 1, 2.
Spirifer trigonalis Sow. Min. Conch. t. 266. f. 2, 3.

bisulcatus Davreux Prov. de Liège p. 272. t. 7. f. 3.

calcarata McCoy Synopsis p. 130. t. 21. f.

Terebratula hastata Sow.

Taf. VII, fig. 18. a — c.

Terebratula hastata Sow. Miner. Conch. p. 66. t. 446. f. 2. 3.
" " Toulas Kohlenkalk von Spitzbergen p. 2. i. f. 1. 1873.

Nachdem ich in der vorstehenden Abhandlung alle Fossilien des oberen Bergkalks, welche im Gouvernement Moskau bisher gefunden worden sind, zusammengestellt habe, bleibt noch übrig, die Vertheilung derselben in’s Auge zu fassen. Obgleich der allgemei-
ne Charakter der Fauna überall derselbe ist, und die Leitfossilien Spirifer mosquensis und Productus semireticulatus nirgends fehlen, so drücken doch gewisse Thierreste, die hier und da in grösserer Anzahl auftreten, den Localfaunen ein eigenes Gepräge auf. Die Fauna des oberen Bergkalks ist im Ganzen eine sehr einförmige, reich an Individuen, aber arm an Arten; indessen an dem einen Orte überwiegen die Fischreste, an dem anderen die Brachiopoden, an einem dritten die Korallen. Ausserdem waren an dem einen Orte nur wenige Schichten zugänglich, an einem anderen mehrere, an dem einen Orte waren zur Ausbeutung des Kalks geringfügige Arbeiten ausgeführt, an einem anderen sehr umfang-

Fossilien aus den Bergkalkschichten von Mjatschkowa *)

Fischreste:

| Edestus protopirata. |
| Cladodus larnnoides. |
| " divergens. |
| Cranodus zonalus |
| Helodus mons canus. |
| Tomodus argutus. |
| Psammodus specularis |
| " turgidus? |
| " angustus. |
| Psephodus rugosus. |
| Sandalodus? |
| Poeclidus grandis. |
| " cireinnans. |
| " concha. |
| " limbatus. |
| Cochliodus laminarius. |

| Deltodus incrassatus. |
| Arpagodus rectangulus. |
| Orodus ramosus. |
| " cinctus. |
| " inaequilaterus. |
| Chiastodus ovallatus, |
| Solenodus crenulatus. |
| Cymatodus plicatus. |
| Petalodus laevis. |
| " destructor. |
| Daetlyodus coneaus. |
| Polyrhizodus longus. |
| Ctenacanthus triangularis. |
| Drepanacanthus pectinifer. |
| Ostasaspis acuta. |
| " Barbotana. |
| " simplicissima. |

*') Die mit einem Stern bezeichneten Fossilien sind in grosser Zahl vorhanden.
Ostinaspis coronata.
Ichthyorhynchus.

Crustacea:
Phillipsia postulata.
" Grünewaldi.

Cephalopoda:
Nautilus elittellarius.
" subsulcatus.
" excentricus.
" oxystomus.
Orthoceras ovale.
" Polyphemus.

Gastropoda:
Pleurotomaria granulosa?
" Ivanii?
Murchisonia angulata.
Euomphalus pentangulatus.
" tabulatus.
Macrochilus ampullaceus.
Chennitzia longispira.
Nerita ampliata.
Natica Omaliana.
Capulus pumilus.
" mitraeformis.
" parasiticus.

Heteropoda:
Bellerophon Keynianus.
" Urei.
" costatus.
" deccussatus.

Prosonocephala:
Dentalium ornatum.

Lamellibranchiata:
Sanguinolites undatus.

Sanguinolites tetraedrus.
Anatina attenuata.
" deltoidea.
Conocardium uralicum.
Area Argo.
Pecten plicatus.
" ellipticus.
Avicula evanescent.
Allorisma regulare.

Brachiopoda:
Productus cora.
" undatus.
" semireticulatus.
" longispinus.
" scabriculus.
" punctatus.
Orthis erenistria.
" senilis.
" Lamarckii.
" eximia.
" resupinata.
Choneles variolata.
" Spirifer mosquensis.
" Strangwaysi.
" lineatus.
" tegulatus.
Camarophoria erumena.
Rhynechonella pleurodon.
Spiriger a ambigu.
Terebratula saeculus.

Bryozoa:
Aulopora campanulata.
Fenestella veneris.
Polypora martis.
" dendroides.
Ascopora rhombifera.

Nouv. Mémoires. Tome XIV.
Ceriopora inaequabilis
Coccinium sellaeforme.

" Michelina.

Chaetetidae:
Chaetetes tumidus.

" radians.
Syringopora pararella.

Echinodermata:
* Archaeocidaros rossica.
Lepidesthes laevis.
Palaeaster montanus.
Calliaster mirus.
Stenaster confluentes.

* Poteriocrinus multiplex.

" bijugus.
Hydriocrinus pusillus.

* Cromyocrinus simplex.

" geminatus.

" ornatus.
Phialocrinus patens.

Phialocrinus urna.
Stemmatoerinus cernnus.
Forbesioerinus incurvus.
Platyerinus sp.

Polypi:
* Bothrophyllum conicum.
Clisophyllum cavanum.
Lithostrotion gorgonenum.
Hydphora Humboldtii.

Foraminifera.
* Fusulina cylinrdrica.
Nummulina antiquior.
Endothyra radiata.
Nonionina rotula.

Fungiæ:
Zu den Lithistüden Zittes gehörig.
Scyphia sp.

Plantae:
Sagminaria calcicola.

Nächst Mjatschkowa ist der reichste Fundort im Gouvernement Moskau das Dorf Karabtschejewo an der Oka gegenüber Kolomna. Der Kalk wurde früher hier gebrochen, die Arbeiten sind aber schon seit länger als 10 Jahren eingestellt, und hat seitdem der Ort auch aufgehört ergiebig zu sein.

Fossilien von Karabtschejewo.

Dactylopus concavus.
Macroclilus ampullaceus.
Enomphalus marginatus.
Natica Omaliana.

Bellerophon costatus.
* Conocardium uralicum.
Productus semireticulatus.

" Cora.
Productus longispinus. Chonetes variolata
* Spirifer mosquensis. Rhynchonella pleurodon.
 " trigonalis. " Terebratula saeculus.
 " Strangwaysi. " hastata.
 " lineatus. Polyopora Martinii.
 " cristas. Chaetetes radius.
 " tegulatus. Archaeocidarlis rossica.
Orthis crenistria.
 " Lamarckii.
 " Lyelliana.

Karabtschejewo ist nach Vorstehendem vorzugsweise reich an Brachiopoden, weist gar keine Cephalopoden auf, und besitzt die anderswo seltenere Muschel Conocardium uralicum.

In den Steinbrüchen zwischen Gshel und Rjatishzy finden sich zum Theil die Bergkalkfossilien vermisch mit Jurapetrefacten im braunen Jurasandsteine, welcher dort unmittelbar den Bergkalk bedeckt.

Versteinerungen des Bergkalks von Gshel:
Eumphalus canaliculatus. Rhynchonella pugnus.
Conocardium uralicum. Fenestella martis.
Productus simatus. Ceriopora sp.
 " punctatus. Zaphrentis sp.
 " longispinus. Cyathophyllum sp.
Spirifer lineatus. Fusulina cylindrica.

Die Fossilien von Gshel sind im Allgemeinen schlecht erhalten, doch verdient dieser Fundort Berücksichtigung, da nur dort Prod. simatus und Rhynch. pugnus vorkommen.

Fossilien des Korallenkalks von Podolsk:
* Spirifer mosquensis. * Chaetetes radius.
Aulopora campanula. * Lonsdaleia floriformis.
Syringopora parallela. * Lithostrotion stylaxis.
Ceriopora inaequabilis. " flexuosum.
Aseopora rhombifera. Bigenera mitrata.
Coscinium sellaeforme.
Fossilien von Fedina bei Račimiro a. d. Moskwa Bryzoenkalk:
Productus longispinus.
Spirifer Strangwaysi.
Orthis Lamarekii.
Chonetes variolata.
Aulopora campanulata.

Aseopora rhombifera.
Fenestella veneris.
Polypora Martis
Archaeocidaris rossica.
Sagminaria calcicola.

Fossilien von Tarbuschewo a. d. Oka:
Productus cora var. riparius.
Spirifer mosquensis.
Orthis erenistra.

Chonetes variolata.
Rhynch. pleurodon.
Archaeocidaris rossica.
Cyathophyllum conicum.

Brachiopoden-Kalk von Studinjetz a. d. Moskwa oberhalb Moskau:
Productus Cora.

Chonetes variolata.
Orthis eximia.
Lamarekii.

Fenestellenkalk von Woskressenskoje an der Rjasan’schen Eisenbahn:
Productus longispinus.
Orthis Lamarekii.
Fenestella veneris.

Von der Lapasna:
Orthis eximia var. venusta.
Productus cora var. riparius.

Von Ssalkowa a. d. Motscha:
Productus semireticulatus.
Spirifer trigonalis.
Chonetes variolata.

Von Dawydowa Pustunj:
Phillipsia globiceps.
Spirifer mosquensis.
Modiola Teploh.

Von Jansa-Ufer in Moskau:
Nautilus tuberculatus.

Von Russawkina:
Camarophoria plicata.

Fossilien, welche als Geröll und in alluvialen und eluvialen Bildungen gefunden worden sind.
Cerithium ignoratum.
Bellerophon costatum.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Edestus.</td>
<td> </td>
</tr>
<tr>
<td>Cladodus lamnooides.</td>
<td> </td>
</tr>
<tr>
<td>Pterododus destructor.</td>
<td> </td>
</tr>
<tr>
<td>Psammodus turgidus.</td>
<td> </td>
</tr>
<tr>
<td>Orodus ramosus.</td>
<td> </td>
</tr>
<tr>
<td>» cinetus.</td>
<td> </td>
</tr>
<tr>
<td>Dactylophus.</td>
<td> </td>
</tr>
<tr>
<td>Polychizodus.</td>
<td> </td>
</tr>
<tr>
<td>Poecilodus.</td>
<td> </td>
</tr>
<tr>
<td>Deltodus.</td>
<td> </td>
</tr>
<tr>
<td>Ostiaspis acuta.</td>
<td> </td>
</tr>
<tr>
<td>Ctenacanthus triangularis.</td>
<td> </td>
</tr>
<tr>
<td>Phillipsia Grunewalldi.</td>
<td> </td>
</tr>
<tr>
<td>» pustulata.</td>
<td> </td>
</tr>
<tr>
<td>Nautilus tuberculatus.</td>
<td> </td>
</tr>
<tr>
<td>Nautilus elitellarius.</td>
<td> </td>
</tr>
<tr>
<td>» subsulcatus.</td>
<td> </td>
</tr>
<tr>
<td>» oxystomus.</td>
<td> </td>
</tr>
<tr>
<td>Pleurotomaria granulosa.</td>
<td> </td>
</tr>
<tr>
<td>» Ivanii.</td>
<td> </td>
</tr>
<tr>
<td>Murchisonia angulata.</td>
<td> </td>
</tr>
<tr>
<td>Euomphalus pentangulatus.</td>
<td> </td>
</tr>
<tr>
<td>» tabulatus.</td>
<td> </td>
</tr>
<tr>
<td>Nerita ampliata.</td>
<td> </td>
</tr>
<tr>
<td>Natica Omaliana.</td>
<td> </td>
</tr>
<tr>
<td>Bellerophon Keynianus.</td>
<td> </td>
</tr>
<tr>
<td>Bellerophon Urei.</td>
<td> </td>
</tr>
<tr>
<td>» costatus.</td>
<td> </td>
</tr>
<tr>
<td>» decussatus.</td>
<td> </td>
</tr>
<tr>
<td>Dentalium ornatum.</td>
<td> </td>
</tr>
<tr>
<td>Allorisma regulare.</td>
<td> </td>
</tr>
<tr>
<td>Sanguinulutes undatus.</td>
<td> </td>
</tr>
<tr>
<td>Anatina attenuata.</td>
<td> </td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Anatina deltoidea.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conocardium uralicum.</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pima flexicostata.</td>
<td></td>
</tr>
<tr>
<td>Pecten segregatus.</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>» plicatus.</td>
<td></td>
</tr>
<tr>
<td>» ellipticus.</td>
<td></td>
</tr>
<tr>
<td>Productus Cora.</td>
<td>+</td>
</tr>
<tr>
<td>» costatus.</td>
<td>+</td>
</tr>
<tr>
<td>» undatus.</td>
<td>+</td>
</tr>
<tr>
<td>» semireticulatus.</td>
<td>+</td>
</tr>
<tr>
<td>» longispinus.</td>
<td>+</td>
</tr>
<tr>
<td>» scabriculus.</td>
<td>+</td>
</tr>
<tr>
<td>» punctatus.</td>
<td>+</td>
</tr>
<tr>
<td>» simulatus.</td>
<td>+</td>
</tr>
<tr>
<td>» muricatus.</td>
<td>+</td>
</tr>
<tr>
<td>Orthis crenistria.</td>
<td></td>
</tr>
<tr>
<td>» senilis.</td>
<td></td>
</tr>
<tr>
<td>Orthis Lyelliana.</td>
<td></td>
</tr>
<tr>
<td>» Lamarekii (Syntrilasma M. & W.)</td>
<td></td>
</tr>
<tr>
<td>» eximia (Oleckella Wh. & St. J.)</td>
<td></td>
</tr>
<tr>
<td>» resupinata.</td>
<td></td>
</tr>
<tr>
<td>Chonetes variolata.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirifer mosquensis.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>» trigonalis.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>» cristatus.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>» lineatus.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>» glaber.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Camarophoria crumena.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rhynchonella pleurodon.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Spirigeria ambigna.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Terebratula sacculus.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>» hastata.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Aulopora campanulata.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polypora dendroides.</td>
<td></td>
</tr>
<tr>
<td>Ascopora rhombifera.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chaeletes tumidus.</td>
<td></td>
</tr>
<tr>
<td>» radians.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Syringopora parallela.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Coscinium Michelina.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lepidesthes.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stenaster.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lonsdalia floriformis.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lithistrotion stylaxis.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>» flexuosum.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Fusulina cylindrica.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Endothyra radiata.</td>
<td></td>
</tr>
</tbody>
</table>
Aus der beigegebenen Tabelle, welche eine Zusammenstellung der Moskauer Bergkalkfossilien mit den Bergkalkfossilien anderer Landstriche enthält, ist ersichtlich, dass unsere Fauna denselben universellen Charakter hat, wie überhaupt die paläozoischen Formationen. Diejenigen unserer Tierreste, welche vorzugsweise Weltbürger sind, d. h. sich in den gleichzeitigen Absätzen fast aller Zonen finden, sind: Productus Cora, semireticulatus, longispinus, seabriculus und punctatus; Orthis crenistra und resupinata; Spirifer lineatus und glaber; Rhyynchonella pleurodon, Spirigeram ambiguus und Terebratula sacculus. Aber wenn die Fauna unseres jüngeren Bergkalks im ganzen Grossen die allgemeinen Züge der Bergkalkfauna trägt, so hat sie doch auch ihr besonderes Gepräge, welches ihr durch einige Leitfossilien aufgedrückt wird, die in anderen Teilen der Welt nicht, oder fast nicht existieren. Hierher gehören vor Allem Archaeocidaris rossica, Chaetetes radians, eine Reihe eigentümlicher Crinoïden und Spirifer mosquensis. Von weniger häufigen Tierresten tragen zum Sondergepräge der Moskauer Facies noch bei einige Fischzähne, wie Psammodius- und Poecilodus-Arten nebst mehreren Vertretern neuer Gattungen, Orthoceras ovale, Euomphalus tabulatus, Conocardium uralicum, Orthis Lamarckii (das Syntrilasma der Amerikaner), Orthis eximia (Meckella der amerikanischen Autoren), Spirifer Strangwaysi und Hydnomphora Humboldtii.

tritt wieder eine entschiedene Verwandtschaft mit Nordamerika hervor, da die beiden ge-
nannten Orthis-Arten als vicariirende Formen von Syntrilasim- und Meckella-Arten der
Nordamerikaner zu betrachten sind. Unser Haupleistfossil Spirifer mosquensis theilen wir
mit Nowaja Semlja, England und Spanien. Ebenso haben wir Chaetetes radians mit Eng-
land und dem arktischen Bergkalk gemeinsam, während Lepidesthes wieder eine Form ist,
die auf Nordamerika hinweist, ebenso wie die hier so stark verbreitete Fusulina cylindrical.

Das Endresultat aller unserer Betrachtungen ist schliesslich, dass neben dem ent-
schieden ausgeprägten Charakter der allgemeinen Bergkalkfauna die europäische Faecies
vorwaltet, und daneben noch die nordamerikanische sich durch einige charakteristische
Typen sehr entschieden bemerklich macht.

Das Gesammtbild des Thierlebens, welches sich uns nach den Ergebnissen der vor-
stehenden Abhandlung darstellt, ist ungefähr folgendes:

Das Meer, welches zur Zeit der SteinKohlenperiode (d. h. zur Zeit, als auf dem
unteren Bergkalk sich die wuchernde Flora der Stigmatiensumpfe entwickelte) den Raum
im Moskauer Gouvernement zwischen der Oka und der Moskwa einnahm, war bevölkert
von Knorpelfischen der verschiedensten Art, bewaffnet mit sehr ungleichartigen Werkzeu-
gen zur Zermalmung der Nahrungsstoffe, welche sie zu sich nahmen. Es gab Fische mit
furchtbaren sägeartigen, denen der jetzigen Haiäische (Carcharias) ähnlich, oder mit kö-
nischen Lammaähhnlichen Zähnen, oder mit gekrümmten kegelförmigen runden Zähnen, alle
wirkliche Räubthiere, bestimmt gegen ihres Gleiches zu wüthen, wie die jetzigen See-
fische, die mit ähnlicher Bewaffnung versehen sind. Andere Fische gab es, die sich wahr-
scheinlich von Schalltiieren nährten, und deren Zähne mit scharfen oder stumpfen Kiel,
mit Höckern und Höckerreihen versehen waren, wie sie aus den jetzigen Meeren nicht
bekannt sind. Weiter war das damalige Meer belebt von Fischen mit mehr oder weniger
flachen dreieckigen und vierseckigen Zähnen oder besser Gaumenplatten. Die dreieckigen
Gaumenplatten weisen auf Verwandtschaft mit den heutigen chimäroiden Fischen (Gallo-
rhynchus), die vierseckigen auf die Myliobatiden der heutigen Meere. Endlich gab es noch
Fische, welche als die entfernten Vorfahren unserer Stör (Accipenser) betrachtet werden
cönnen, wenn auch die emaillirten Hautschilder von Ostinaspis nicht ganz gleich sind
den Hautschildern der russischen Stör. Ganoide Fische scheint es wenig gegeben zu ha-
ben, denn die charakteristischen rhombischen Glanzschuppen sind selten gefunden worden.

Nächst den Fischen spielten die grösste Rolle in der damaligen Thierwelt die
Brachiopoden. Nach den zahlreichen Uberbleibseln zu urtheilen, die von ihnen vorhan-
den sind, waren sie in viel grösserer Menge vorhanden, als die Fische, wobei man in-
dessen nicht vergessen darf, den Umstand in Rechnung zu ziehen, dass die Fische mit
Fleisch und Knorpelsubstanz der Verwesung anheim fielen, während die Schalen der Brachiopoden erhalten blieben, und namentlich die zahlreichen Productusarten, welche zwischen ihren gewölbten Schalen nur wenig Weichtheile einschlossen. Vor allen traten massenweise auf die Arten der Gattungen Productus, Spirifer und Spirigeria, erloschenen Gattungen, die heut ihres Gleiches nicht mehr in unseren Meeren haben, was zu dem Schlusse berechtigt, dass seit der permischen Zeit die Existenzbedingungen für sie aufgehört haben, günstige zu sein. Die Arten der Gattung Terebratula waren damals weniger zahlreich und auch ihre Individuenzahl kleiner, aber sie haben mit Rhynchonella fast ohne Wandlung der Form den Wechsel aller Perioden überdauert.

Während die zahlreichen Heteropoden, die Belierophonten, mit den wenigen Cephalopoden das offen, hohe Meer bewohnten, scheint der Wohnsitz der Brachiopoden die grösseere Tiefe gewesen zu sein, aber sowohl die einen wie die anderen, die Bewohner der Höhe wie der Tiefe, wurden in denselben Mergel- und Kalkschlammabsätzen begraden.—Die in grossartigem Massebem sich vermehrenden Rhizopoden (die Fusulinen) mögen, wie auch die Heteropoden, vielfach den Fischen zur Nahrung gedient haben, denn die stachligen Producten und die dickschaligen Spiriferen, die wenig Fleischsubstanz boten, mögen weniger nach ihrem Geschmack gewesen sein.

Einen malerischen Bestandtheil der damaligen Fauna mögen die unterseeischen Blumenfelder der Seelilien geboten haben. Sie sind jedenfalls für andere Thiere als Nahrung sehr wenig begehrenswerth gewesen, und haben ihren Untergang wohl meist durch Erstickung im thonigen Schlamm gefunden. Aber wenn sie für ihren vielgliedrigen Körper viel Kalksubstanz (die ihnen möglicher Weise die Rhizopoden geliefert haben) gebraucht, so sondernten sie wahrscheinlich andererseits fleischige Substanz aus, denn auf diese Weise lässt sich erklären, dass gewisse Arten der Crinoideen heftig von Gastropoden (Capulus) verfolgt wurden, da für diese Thiere höherer Ordnung die Auswurfsstoffe jener nützlich zu verwerthen waren. Jedenfalls haben die Crinoideen stellenweise den Meeresboden in ungemessener Zahl bedeckt, und wenn sie auch nicht mit dem Glanz der Farben geschmückt gewesen sind, so können doch die Bewegungen der von langen Stielen getragenen, sich hin und herneigenden ausgebreiteten Armkreise nicht ohne Reiz gewesen sein, wenn sich auch ihre graziösen Schwingungen nur für unempfindliche Fischaugen vollzogen haben.

Denken wir uns zu alledem noch niedrige Korallenbänke, horizontal auf der Untertage von Kalklagern aufgebaut von Chaetetes, Lithostroton, Lonsdalia und Cyathophyllum, und bevölkert von Millionen von Seeigeln (Archaeocidaris), die mit ihren spitzen Fresswerkzeugen möglicher Weise die Weichtheile der Polypen abgeweicht haben, daneben noch zahlreiche Brachiopoden sich anheftend an die Kalkwände vermittelst ihrer Muskelarme und dünne Bryzoengehäuse auf dem Kalkschlamm in der Tiefe, so haben

Nouv. Mémoires. Tome XIV.
wir im ganzen Grossen ein Bild des Tierlebens in dem Meere, aus welchem sich der sogenannte obere Bergkalk abgesetzt hat.

Belemnites Panderianus d'Orb.
 absolutus Fisch.
Ammonites Eugenii Rasp.
 Arduennensis d'Orb.
 cordatus Sow.
 Jason Mü.
 plicatilis Sow.
 parabolis.
 Fischarianus d'Orb.
 Frearsianus d'Orb.
 Toucasianus d'Orb.
Auloceras inaequaliterus Trd.
Nautilus intermedium Sow.
Pleurotomaria Buchiana d'Orb.
Turritella Fahrenkohl Rouill.
Geridium septemplicatum Roem.
Rostellaria bispinosa Will.

Gryphaea signata Rouill.
Anomia similis Trd.
Plicatula subserrata Gldf.
Ostrea gregaria Sow.
Exogyra reniformis Gldf.
Pinna lanceolata Sow.
Astarte cordata Trd.
Cucullaea conninna Gldf.
 Rouillieri Trd.
 Nucula Hammeri Drf.
 Leda lacryma Sow.
 Lima deflexa Trd.
 Pholadomya opiformis Trd.
 Dubois d’Orb.
 Trigonia costata Park.
 Rhynchoella quadruplicata Ziet.
 furcellata Theodori.

Im oolithischen Mergel sind gefunden worden:

Rhynchoella acuticosta Hehl.
 personata v. Buch.
Terebratula impressa Br.
Im eisenschüssigen Sande, der vielleicht nur ein Nest in schiefen Thonen gebildet hat sind gefunden:

Ammonites Jason Mü.
 " coronatus Brug.

Unterhalb der Brücke von Mjatschkowa überlagern den Bergkalk höhere Jurasedimente, nämlich bituminöser schwarzer Kalk und bituminöser schwarzer sandiger Mergel mit

 " biplex Sow. Lucina lyrata Phill.

und dunkelgrüner glaukonitischer Sand mit

A. virgatus v. Buch.
A. catenulatus Fisch. und
Aucella mosquensis MVK...

Außerdem kommt ebendort noch vor, doch wie es scheint nur nesterweise, gelblicher Sandstein mit A. nodiger, der schon zum Neocom gehört.

October 1878.

II. Trautschold.
ERKLÄRUNG DER ABBILDUNGEN.

Tafel I.

Fig. 1. a. Syringopora parallela Fisch. in natürlicher Grösse.
 b. Dasselbe Fossil vergrössert.
 c. Dasselbe im Längsschnitt vergrössert.
 d. Dasselbe im Querschnitt, natürliche Grösse.
 e. Dasselbe im Querschnitt, vergrössert.
2. a. Coscinium sellaeforme Trd. in natürlicher Grösse.
 b. Dasselbe senkrecht durchschnitten vergrössert, Dünnschliff.
 c. Dasselbe horizontal durchschnitten vergrössert, Dünnenschliff.
 b. Dasselbe vergrössert.

Tafel II.

Fig. 1. a. Archaeocidaris rossica M. V. K. Das am besten erhaltene Exemplar in natürlicher Grösse.
 1. b. Einige Ambulacralplatten desselben Fossils vergrossert.
 1. d. Derselbe von oben.
 1. e. Derselbe von unten.
 1. f. Der bewegliche Zahn des Kauapparats vergrössert.
 1. h. Eine Pyramide mit dem beweglichen Zahn von innen vergrössert.
 1. i. Eine Pyramide von aussen.
 1. k. Ein Stachel von Archaeocidaris rossica.
 1. m. Ein platter Stachel.
 1. n. Stachel von A. acanthifera.
2. a. Palacaster montanus Stechurovsky von der Bauchseite in natürlicher Grösse.
2. b. Derselbe von der Rückenseite.
3. f. g. Adumbulacralplatten desselben Fossils.
3. h. Papillae desselben Fossils.
Fig. 5. a. *Stenaster* confluens Trd. Ein Arm von der Bauchseite vergrössert.
 b. Derselbe von der Rückenseite.
 c. Derselbe im Querschnitt.
 d. Derselbe in natürlicher Grösse.

Tafel III.

(Alle Figuren sind in natürlicher Grösse.)

Fig.

1. *Poteriocrinus* originarius Trd.
4. *Hydriocrinus* pusillus Trd.
5. *Cromyocrinus* geminatus Trd.
6. *Cromyocrinus* geminatus links, Cr. simplex Trd. rechts.
8. *Cromyocrinus* simplex mit Capulus, ein anderes Exemplar.
11. *Forbasiocrinus* incurvus Trd.

Tafel IV.

Fig.

4. b. Derselbe von der Seite.
5. b. c. Derselbe von der Analseite und von unten.
7. a. Bruchstück eines Stiels von *Platyocrinus*.
7. f. Wechselnde Stellung der elliptischen Stielstücke von *Platyocrinus*.
8. a. Bruchstück eines *Crinoideenstiels von Mjatschkowa*.
8. b. c. Gelenkfläche der Stielglieder desselben Stiels.
10. Stielstück eines *Poteriocrinus*.
Fig. 13. Bruchstück eines Arms von Poteriocrinus multiplex mit der Basis der pinnae.

14. b. Gelenkfläche eines Armgliedes, an welche die pinnae eingelenkt sind.

Tafel V.

Fig. 1. a. Bothrophyllum conicum Fisch.
2. b. Desgleichen, ein anderes Exemplar.
3. c. Ein Querschnitt derselben Koralle.
3. e. und f. Der Kelch desselben Fossils von oben gesehen.
(Alle Figuren in natürlicher Größe.)

1. b. von oben nat. Gr.
3. b. Die Spitze der Columella desselben Fossils von der Seite, zweifach vergrößert.
3. c. Querschnitt der Columella derselben Koralle.
3. d. Querschnitt eines Gehäuses.
3. f. Das Gehäuse von L. floriformis so der Länge nach durchbrochen, dass die parallel und senkrecht, nicht spiral gedrehten Rippen der Columella hervortreten.
4. b. Dasselbe von oben.
5. a. Verwittertes und in der Folge verkieseltes Exemplar von Lonsdaleia floriformis.
7. b. Querschnitt desselben Fossils.
8. b. Längsschnitt eines Gehäuses im Dünnschliff, vergrößert.

Tafel VI.

Fig. 1. Hydnophora Humboldtii Fisch. a. von oben, b. dasselbe Exemplar, vertikaler Durchschnitt, c. ein anderes Exemplar in vertikalem Durchschnitt (a. d. Sammlung d. H. Wisschnajkov), d. ein Stenehen im horizontalen Durchschnitt, vergrößert, e. ein Stenehen von oben gesehen vergrößert.
2. Fusulina cylindrica Fisch. a. in doppelter Vergrößerung, b. der Länge nach durchschnitten.
5. Bradyina nautiliformis Möll. a. in natürlicher Größe von der Seite, b. vergrößert, c. Frontansicht vergrößert.
Fig. 6. Bigenera mitrata Tr. a. von der Seite vergrößert, b. die letzte Kammer (Mütze) von oben, c. eine Scheidewand einer der einreihigen Kammer.

7. Scyphia sp. zu den Lithistiden Zittels gehörig. a. von der Seite, b. von oben.

8. Edestus prototira Tr. a. in natürlicher Grösse von der Seite, b. von vorn, c. ein Zähnchen vergrößert.

11. Cladodus divergens Tr. a. in natürlicher Grösse, b. vergrößert.

Tafel VII.

Fig. 1. Poecilodus cirrinnans Tr. a. von der Innenseite, b. von vorn, c. von der Außenseite, d. von oben vergrößert, e. von der Innenseite vergrößert.

2. Orodus cinctus Ag. von oben, nat. Gr.

3. Cymatodus plicatilis Tr. a. von der Seite, b. ein anderes Exemplar, c. das letztere im Profil.

5. Deltodus incrassatus Tr. a. von oben, b. von der Innenseite im Profil.

6. Deltodus laminaris Tr. (Cochlioneus?) der linke Zahn von oben, b. Stellung der Zähne im Kiefer.

8. Tomodus argutus Tr. a. von vorn, b. im Profil, c. von hinten.

13. Petalodus sp. a. von vorn, b. im Profil.

15. Schuppen ganoider Fische in natürlicher Grösse.

17. 18. Schuppen ganoider Fische vergrößert.

ALPHABETISCHES VERZEICHNIS DER FOSSILIEN.

(Band XIII, pag. 277—374. Band XIV, pag. 1—82.)

A.
Allorisma regulare.............. 317
Anatina......................... 318
" attenuata...................... 319
" deltoides...................... 319
Arca Argo....................... 320
Archaeocidaris.................. 5
" rosica......................... 6
Arpagodus rectangulus......... 59
Ascopora......................... 367
" rhombifera..................... 368
Aulopora......................... 362
" campanulata.................... 363
Avicula......................... 323
" evanescens..................... 324

B.
Bellerophon...................... 314
Bellerophon costatus........... 315
" decussatus..................... 316
" Keynians....................... 314
" Urei........................... 315
Bigenerina nitratæ.............. 47
Botrophylhum conicum........... 30
Bradyina......................... 44
" nautiformis..................... 45

C.
Calliaster mirus.............. 10
Camarophoria crumenæ........ 357
" plicata....................... 358
Capulus mitraeformis........... 313
" parasiticus.................... 313
" pumilus....................... 312
Ceriopora inaequabilis........ 308
Cerithium ignorantum.......... 306
Chaetetes tumidus.............. 369
" radians....................... 370

Chernitzia...................... 310
" longispina................... 311
Chiastrum ovallatus............ 88
Chonetes variolata............. 341
Cladodus......................... 286
" divergens..................... 51
" lamnoides..................... 286
Cleiothyllum cavum........... 32
Cochliodus laminaris........... 294
" triangularis.................. 292
Conocardium.................... 319
" uralicum....................... 320
Coscinium Michelii........... 5
" sellaeforme.................... 4
Cranodus......................... 53
" zonatus....................... 54
Cromyocrinus................... 18
" geminatus..................... 22
" ornatus....................... 23
" simplex....................... 19
Ctenacanthus................... 60
" triangularis.................. 61
Cynthophyllum................... 30
Cymatodus plicatilis........... 53

D.
Dactylodus concavus........... 294
Deltodus incrasatus........... 54
Dentalium ornatum............ 316
Drepanacanthus pectinifer...... 297

E.
Edestus protoporata........... 49
Endothyra crassa.............. 45
Enomphalus canaliculatus...... 61
" pentagonalis................. 309
" tabulatus..................... 309

F.
Fenestella...................... 364
Fenestella veneris.......................... 365
Forbesiocrinus incurvus............... 28
FIGULFRINCA 43
Fusulinella............................. 45
" Bradyi......................... 47
" sphaerica.. 46

II.
Helodius mons canus................. 288
Hydrophora Humboldtii............ 40
Hydriocrinns.......................... 17
" pusillus.. 18

I.
Ichthyorhynchus.......................... 300

L.
Lepidesthes laevis...................... 8
Lithostrotion........................... 35
" flexuosum.. 37
" gorgonenum.. 37
" stylaxis.......................... 36

M.
Macrocilus ampullaceus............. 310
Modiola Tepeh.. 321
Murchisonia.. 307
" angulata........... 268

N.
Natia Omaliana.......................... 312
Norita amplata.......................... 311
Nautilus clitellaris................. 302
" excentrica..................... 304
" oxystoma........... 304
" subsulcatus.. 303
" tuberculatus.. 302
Nummulina.......................... 41
" antiquitor.. 43

O.
Orodus cinctus.......................... 52
" inaequilaterus... 292
" ramosus.. 292
Orthis crenistria........................ 337
" eximia....................... 345
" Lamarchii.. 345
" Lyelliana.. 343
" resupinata........ 347
" senilis........................... 340

Orthoceras ovale.......................... 305
" Polyphagus.. 305
" Osteostrus acuta........................ 299
" Barbotana(716,583),(997,997).................. 388
" coronata.......................... 60

P.
Palaeaster montanus.................. 9
Pecten ellipticus.................... 323
" plicatus........................ 323
" segregatus.. 322
Petalodus destructor................... 56
" laevis........................ 233
Phalacrinus............................ 12
" patens................................ 25
" arna................................ 25
Philipia globiceps.................... 360
" Grincwallidi........................ 301
" postulata......................... 301
Pinna flexicostata........................ 322
Platycrius....................................... 29
Pluotonaria granulosa............... 367
" Iwanii................................ 307
Poccellus cinctuus.................... 52
" concha................................ 290
" granulis................................ 51
" limbatus................................ 291
Polyphora dendroides.................. 366
" irregularis........................ 366
" Martis................................ 365
Polyrhizoderus.................................. 296
" longus................................ 50
Poteriocrinus bifugus.................. 16
" multiplex........................ 14
" originarius........................ 12
Productus Corona........................ 337
" costatus................................ 62
" longispinus........................ 331
" maricatus........................ 336
" punctatus........................ 335
" scabrius........................ 333
" semiarticulatus....................... 330
" spinatus........................ 335
" undatus........................ 329
Psammodus angustus.................... 292
" specularis........................ 288
Psephodius.......................... 57

R.
Rhynochella pleurodon.............. 358
<table>
<thead>
<tr>
<th>S.</th>
<th>T.</th>
<th>Z.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagminaria calcicola</td>
<td>tegulatus</td>
<td>Zapirentius</td>
</tr>
<tr>
<td>48</td>
<td>354</td>
<td>33</td>
</tr>
<tr>
<td>Sandalodas</td>
<td>trigonalis</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>351</td>
<td></td>
</tr>
<tr>
<td>Sanguinolites tetraèdrus</td>
<td>Spirigera ambigua</td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>undatus</td>
<td>Stemmatocrinus</td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Scyphia</td>
<td>cernuus</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Solenodus crenulatus</td>
<td>Stonaster confluentius</td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Spirifer</td>
<td>Syringopora parallela</td>
<td></td>
</tr>
<tr>
<td>348</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>" angustivolvatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" bisulcatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" cristatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" glaber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" lineatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" mosquensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Strangwaysi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>352</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE DES MATIÈRES.

Trauscheold, II. Die Kalkbrüche von Mjatschkowa. Eine Monographie des obern Bergkalks. (Schluss.) Mit 7 Tafeln. 1
NOUVEAUX MÉMOIRES

DE LA

SOCIÉTÉ IMPÉRIALE DES NATURALISTES

DE MOSCOU.

TOME XIV.
formant le Tome XX de la collection.

Livraison 2.

Avec 6 planches.

MOSCOU.
Imprimerie de l'Université Impériale.
Strastnoi Boulevard.
1881.
NOUVEAUX MÉMOIRES

DE LA

SOCIÉTÉ IMPÉRIALE DES NATURALISTES

DE MOSCOU.

TOME XIV.

formant le Tome XX de la collection.

Livraison 2.

Avec 6 planches.

MOSCOU.

Imprimerie de l'Université Impériale.
Strastnoï Boulevard.
1881.
DER JURA

DER

UMGEHENDE VON ELATMA.

Eine

PALÄONTOLOGISCH-GEOGNOSTISCHE MONOGRAPHIE

VON

S. Nikitin.

1-te Lieferung.

Nouv. Mémoires. Tome XIV.

S. Nikitin.

20 October 1880.
I. Historische Uebersicht der Erforschungen des Jura in der Umgegend von Elatma.

Seit dem Beginne der geologischen Forschungen in Russland richteten die Geologen sehr oft ihr Augenmerk auf Elatma, als auf eine der besten, für Russland classisch gewordenen jurassischen Gegenden.

In dem grossen Werke von Murchison, Verneuil und Keyserling finden wir wieder Okschewo und Elatma als zwei bedeutende jurassische Gegenden besprochen.

*) Георгий журнал 1838, кн. 9.
**) Beiträge zur Bestimm. der Gebirgsformationen in Russland. 1840, S. 81—90.

(***) Période moyenne. Vol. II, p. XV et XXVII.

Die zwei soeben erwähnten Artikel von Neumayer und Lahnusen haben mir in meinen Forschungen als Ausgangspunkte gedient. Nach vorhergehender Prüfung dieser Werke im

**) Ergänzung zur Fauna des Russischen Jura. 1876, S. 32.
***) Die Ornathentone von Tschulikowo etc. Benecke's geol. Beiträge. Bd. II.

II. Beschreibung der Entblössungen.

1.

Nouv. Mémoires. Tome XV
dunkeln Thonarten, welche verschiedenen Etagen angehören. Den vollständigsten und interessantesten Durchschnitt sieht man zwischen der Stadt selbst und dem Dorfe Inkino.

Nach der Bodenschicht und einer ungleichmässigen aber bedeutenden Lage von deluvialen gelbbraunen Thon folgen unmittelbar:

2a. Hellgrauer Thon mit Bel. extensus und einigen Gasteropoden und Bivalven der unterliegenden Oolithenschicht, erreicht kaum einen Meter.

Steph. Elatmae

als dieser Schicht angehörend; alle übrigen kommen gewiss von höher liegenden Etagen. Die Höhe übersteigt nicht 2—3 Meter.

1. Unterer stellweise schieferiger grauer Thon mit vielen grauen Kalkstein-Concretionen, die Eisenkies enthalten. Die Höhe dieser Etage beträgt 6—8 Meter und darüber, kann aber nicht genau bestimmmt werden, da wir nicht wissen, wie tief er sich unter dem Wasserspiegel der Oka hinzieht. Der Horizont dieser Schicht mit der vorerwähnten (1a) bildet einen saufsten Abhang zur Oka hin und wird jeden Frühling überschwemmt. Die Versteinerungen sind hier nur in Kalkconcretionen zu haben und bilden eine ganz eigenthümliche Fauna

Stephan. Elatmae
 " macrocephalum
 " tumidum
 " lamellosum

Bel. subabsolutus.

Bel. Pandertanus liegt an der Oberfläche dieses Thones in zahlreichen Stück, da ich ihn aber niemals im Thone oder in den Kalkconcretionen selbst gesehen habe, wage ich es nicht, diese Species als für diese Schicht eigenthümlich zu halten.

Diese fossilienreiche Entblösung ist schon vor mir von vielen Geologen beschrieben. Diese Beschreibungen waren aber, wie gesagt, noch sehr unvollkommen und forderten ein genaueres Studium in Hinsicht der Stratigraphie und Paläontologie der einzelnen Schichten. Murchison *) gibt uns folgendes Profil der Elatom’schen Entblösung:

a) Schieferiger Thon und Sand.
b) Schwarzer schieferiger Thon mit Kalkconcretion und Fossilien.
c) Schieferiger Sandmergel und Grünsand.
d) Dunkler schieferiger Thon.
e) Gelblicher eisenschüssiger Sand mit Kalksandstein-Concretionen mit vielen Versteinerungen.
f) Dunkler und gelber eisenschüssiger sandiger Mergel.
g) Diluvium.

Die unterste Schicht (a) ist meiner Meinung nach nichts als Flussschlamm und Schutt. Der ganze Complex b, c und d entspricht vollkommen meinen Schichten 1 und

*) l. c.

2.

3.

Die bei Lassino entblößten Schichten sind folgende:

Diluvialthon.

Der Sandstein und der Mergel enthalten:

\begin{itemize}
 \item *Cosm. Jason.*
 \item *Cosm. enodatum.*
 \item *Perisph. submamatus.*
 \item *Bel. subabsolutus.*
\end{itemize}

Die unterliegenden Schichten sind mit Gras bewachsen. Von hier an sehen wir keine

*) l. c.
Entblösungen bis Okschowo, eine Oertlichkeit, welche 20 Kilometer unterhalb Elatma gerade an der Grenze des Gouvernements Wladimir liegt.

Ein mächtiges Schuttlager mit Gras und Waldungen überwachsen, so dass die oberen und unterliegenden Schichten hier niemals in Berührung mit einander zu sehen sind, nicht wie es bei Dittmar gezeichnet ist.

ristische Bivalven und Brachiopoden (Rhyn. personata, varians) der oberen Kelloway-
formation Russlands.

3.

Wo die soeben beschriebene Entblößung aufhört, zieht sich der Fluss wieder zwischen
dniedrigen Ufern, indem sich die bewaldeten Anhöhen nach Westen entfernen. Beim Dorfe
Santschury sieht man eine kleine Entblößung der oberen und mittleren Schichten von
Okschowo. Dann verschwinden sie wieder und kommen in einer mächtigen fast senkrech-
ten Wand an demselben linken Ufer der Oka, 1 Kilometer unterhalb des Kirchdorferes
Dmitrievy-Dory in einer Entfernung von ungefähr 10 Kilometer von Okschowo zu
Tage. Diese fossilienreiche Localität wurde zuerst von Herrn Trautschold entdeckt und
beschrieben.

Hier finden wir:

Gelblichrothe Diluvialthone mit vielen erratischen 4 bis 5 Meter grossen Blöcken.

3—4. Dunkelgrauer an Versteinerungen sehr armer Thon. Ich habe nur Bel. Pandri-

an us und einige Bivalven gefunden. Erreicht eine Höhe von 5 Meter.

2. Eisenoolith-Sandstein, oben in lockerem Sand übergehen. Der Sandstein hat hier nur
sehr wenig Kalk. Er hat eine Höhe von 4 Meter, und enthält eine Menge Ver-

teinerungen; von Cephalopoden haben wir:

Perisph. mutatus

submutatus

fumatus

Steph. Milaschewici

Tschefkini

stenolobium

Cosm. euctodatum

Jason

Castor

Amalib. Galdrinus

Bel. subabsolusus

Pandrianaus.

1. Grauer Thon, nur theilweise zu Tage kommend, sonst unter Schutt und herunterge-
glittenem Diluvialthon und Flusschlamm verborgen, erreicht über dem niedrigen Wassers-
spiegel eine Höhe von 6 Meter, hat aber nur sehr wenige Fossilienreste. Ich habe

*) L. c. S. 180.
**) L. c. S. 81—90.

Von hier an, die Umgeb hinauf habe ich nirgends eine jurassische Schicht entdeckt. Bei der Stadt Melneki kommt schon wieder der Bergkalk zu Tage.

III. Vergleich der Ablagerungen.

Die Bohrlocher von *Sabatier* in der Umgebung von Murom und Alexandrowo sind die Lokalitäten, wo jurassische Schichten im Constante mit jenen zu sehen sind. Trias und Perm finden hier ihre äussere westliche Grenze.

Der insularische Character der jurassischen Schichten bei Elatma kann nur durch spätere Ausschwemmungen hervorgebracht sein. Schichten, die ohne allen Zweifel unsere jurassische Gegend mit dem Rjasan'schen, Sysran'schen, Moskauer Jura und vermutlich mit dem Jura der oberen Wolga verbanden, sind gänzlich vernichtet. Selbst da, wo wir die mächtigsten der hiesigen Ablagerungen treffen, finden wir keine Spur der oben jurassischen (Wolgauer) Schichten. Und doch waren sie auch hier entwickelt, da sie fast überall bei Spask und Sysran, sowie bei Moskau und Kineschma zu Tage kommen. Selbst

die obere Oxfordformation zeigt uns bei Elatma viele zweifellosse Spuren der späteren Zerstörungen und Vernichtung.

Als allerunterste an den Ufern der Oka hier entblößte Schicht erscheint

N° 1. Die Etage mit Stephanoceras Elatmae (Macrocephalenschicht).

Bei Inkino, wo eine mächtige Entblösung dieser Etage ganz deutlich zu Tage kommt, geht er oben in sandigen grauen Thon und grünlichgelblichen Eisensand über (N° 1 a). Die leitenden Fossilien der beiden Schichten sind aber dieselben, so dass ich die obere nur für eine sandige lokale Modifikation des unterliegenden Thones halte. Die Ammoniten haben sich im Kalkstein ausgezeichnet schön erhalten. Ich kenne keine jurassische Localität, wo diese Versteinerungen ihre Muscheln so vollkommen bewahrt haben wie hier. Sie werden die beste Zierde palæontologischer Sammlungen ausmachen.

Diese Etage enthält:

Von diesen Species geht nur Belemnites subabsolutus in die folgende Etage über. Die am obersten vorkommende Form ist Stephanoceras Elatmae, alle andern sind äusserst selten.

N° 2. Die Etage mit Stephanoceras Milasevici.

Nouv. Mémoires Tome XV. 13
Perisphinctes submutatus. Stephanoceras stenolobum.

" mutatus. " Tschefkini.

" funatus. " Harpoceras punctatum.

Cosmocras Jason. Amaltheus Mariae.

" enodatum. " Galdrinus.

" Waldheimii. " Nautilus Wolgensis.

" Castor. " Okensis.

Stephanoceras coronatum. Belonmites extensus.

" Renardi. " subabsolutus.

In der palaeontologischen Sammlung des Bergmuseums zu S.-Petersb. sah ich aus derselben Etage noch Cosm. Duncani. Von allen diesen Species geht nur Bel. Panderianus in die folgende Etage über. Die hier am ältesten vorkommenden Formen sind Perisph. submutatus, mutatus; Cosm. Jason und enodatum; Steph. coronatum und Milaschevici, so wie die Bel. subabsolutus.

№ 3 und 4: Die Etagen mit Amaltheus cordatus und Amalthe altemanus.

Der für die oberen Schichten so charakteristische Amalthe alternans wurde hier niemals gefunden. Die Gasteropoden und Bivalven, die ich später noch beschreiben werde, machen die Annahme der beiden Etagen notwendig. Ich sammelte hier:

Amaltheus vertebralis. Belonmites Panderianus.

" tenuicostatus.

IV. Vergleich des Elatom’schen Jura mit dem mitteleuropäischen und einigen russischen Jurabecken.

Um uns eine genaue Vorstellung zu geben, zu welcher von den geologischen Epochen die obenbeschriebenen Elatom’schen Schichten gehören, wollen wir uns zu den Tabellen wenden, die uns die Vertheilung der jurassischen Fossilien des Elatom’schen Basins in anderen, gut erforschten jurassischen Gegenden zeigen.

Vertheilung der Elatom’schen Species im mitteleuropäischen Jura.

<table>
<thead>
<tr>
<th>№ der Fläche im Elatom’schen Jura</th>
<th>Species, die dem Elatom’schen und mitteleuropäischen Jura gemeinsin sind</th>
<th>Kelloway</th>
<th>Oxford</th>
</tr>
</thead>
<tbody>
<tr>
<td>№ 1.</td>
<td>Stephanoceras macrocephalum.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>» tumidum.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>» lamellosum.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perispinctes funatus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosmoceras Jason.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>» Gulielmi.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>» Castor.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>» Duncanii.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>№ 2.</td>
<td>Stephanoceras coronatum.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>» Renardi.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Harpoceras punctatum.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Amaltheus Mariae.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>» Galdrinus.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>» cordatus.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>» vertebralis.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>№ 3.</td>
<td>Alle übrigen Elatom’schen Species sind ausschließlich russische Formen.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alle übrigen Elatom’schen Species sind ausschließlich russische Formen.

Einheilung der E1atomi'schen Species in den Jurabecken von Moskwa und Rybinsk.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Perisphinctes mutatus.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» submutatus.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cosmoceras Jason.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» Gulielmii.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» Castor.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Stephanoceras coronatum.</td>
<td>+ + + + +</td>
<td>-</td>
</tr>
<tr>
<td>» Milaschevici.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» Tscheffkin.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Harpoceras punctatum.</td>
<td>+ + + +</td>
<td>-</td>
</tr>
<tr>
<td>Amaltheus Mariae.</td>
<td>+ + + +</td>
<td>-</td>
</tr>
<tr>
<td>Cosmoceras Duncan.</td>
<td>+ + + +</td>
<td>-</td>
</tr>
<tr>
<td>Nautilus Wolgensis.</td>
<td>+ + + +</td>
<td>-</td>
</tr>
<tr>
<td>Belemmites subabsolutus.</td>
<td>+ + + +</td>
<td>-</td>
</tr>
<tr>
<td>» extensus.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» Panderianus.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Amaltheus cordatus.</td>
<td>+ + + +</td>
<td>-</td>
</tr>
<tr>
<td>» vertebrales.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>» tenuicostatus.</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Perisphinctes Bolobanovi.</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

V. Palaeontologischer Theil.

CEPHALOPODA.

AMMONITIDAE.

1) Externe Hälften der Sutur muss man den von aussen sichtbaren, also den von der Externseite auf beiden Seiten bis hinab zur Nath reichenden Theil der Lobenlinie nennen. Interne Hälfte heisst dann der auf der Intern-Seite verlaufende Theil der Sutur.

*) Palaeontographica. Band 26 und 27.

3) Bei allen Ammonoiten ist die zweite Sutur anders geformt, als die erste und dadurch charakterisiert, dass sie in allen Fällen einen Aussenlobus besitzt, welcher sich in Gestalt einer Einsenkung an der Spitze des Aussensattels bildet. Durch diese Eisenung wird der in der ersten Sutur noch unpaarige Aussensattel schon von der zweiten Sutur an paarig. Daher müssen die beiden ersten Sättel, welche sich bei den ausgewachsenen Ammonoiten zu beiden Seiten des Aussenlobus erheben, als Aussensättel (nicht wie die ersten Lateral betrachtet werden, wie ich selbst und mehrere Palaeontologen es früher nannten), denn sie sind aus dem ursprünglichen Aussensattel hervorgegangen.

4) Die Sutur aller Ammonoiten durchläuft in der Jugend ein typisches Goniatiten-Stadium; auf dieses folgt später nach einer verschiedener Anzahl von Suturen, das ammonitische Stadium, und zwar entweder direct, oder durch Vermittelung eines Ceratiten-stadiums.

Perisphinctes Waagen.

1. **Perisphinctes funatus** Oppel.

Fig. 7, 8.

Ammonites triplicatus Quenst. Ceph. tab. 13, fig. 7.
Ammon. triplicatus Quenst. Jura s. 480 tab. 64. fig. 17—19.
Perisph. funatus Neum. Ceph. Balin s. 40 Tab. XIV. fig. 1.
Durchmesser 132 Mm.
Höhe des letzten Umgangs 0,24.
Dicke des letzten Umgangs 0,28.
Weite des Nabels 0,40.

Die stark entwickelten Loben zeigen den bekannten Planulatenecharakter aus der Gruppe des Perisph. procerus. Der Hauptlaterallobus ist etwas länger als der Aussenlobus.

2. Perisphinctes Bolobanovii Nik.

Fig. 6.

Durchmesser 52 Mm.
Höhe des letzten Umgangs 0,27.
Dicke des letzten Umgangs 0,48.
Weite des Nabels 0,56.
Flache Form mit einem sehr weiten Nabel und abgerundeten Windungen. Die Form des Durchmessites, die an den jungen Umgängen stark zusammengedrückt ist, wird an
den ausgewachsenen fast kreisförmig. Auf der Seitenfläche sind stumpfe undichte, stark-
ausgeprägte Rippen, die sich nur beim Uebergange auf die Aussenfläche spalten. Die
Rippen theilen sich meist in zwei, seltener in drei Zweige. Die Zweige sind schwächer
ausgeprägt als die Hauptrippen, glätten sich in der Mitte aus, ohne gänzlich zu verschwimden,
was nur auf den inneren Abdrücken zu sehen ist. Auf den inneren Windungen
biegen sich die Rippen nach vorn, auf den grossen Umgängen sind sie vollkommen
radial, wie bei der Gruppe des Per. procerus, zu welcher ich diesen Ammoniten in meiner
ersten Arbeit hinstellte, was ich jetzt, seit dem mir die inneren Windungen besser
bekannt sind, nicht mehr unterstützen kann. Hin und wieder bemerkt man Eindrücke und
Spuren der ehemaligen Mündungen, welche die Regelmässigkeit in der Verzweigung der
Rippen auf der Aussenfläche stören, was sehr gut auf meiner Zeichnung zu sehen ist.

Die Lobenlinie neigt sich stark rückwärts zur Nabelkante hin, doch senkt sie sich
nicht niedriger als das Ende des Aussenlobus. Letzterer ist länger als die übrigen. Der
zweite Seitenlobus ist kurz, stark nach aussen gebogen, so dass sich derselbe mit dem
ersten Seitenlobus fast kreuzt. Die Auxiliarloben sind zur Kreislínien der Muschel fast per-
pendicular. Die Sättel sind dichotom. Der erste Lateral ist sehr schmal, der zweite zum
Centrum hingeneigt.

Am nächsten schliesst sich unsere Form an Perisph. evolutus Neum., unterscheidet
sich aber von denselben durch längere Hauptrippen, die sich viel höher spalten und auf
den inneren Windungen nach vorwärts geneigt sind. Diese letzteren zeigen einige Ueber-
einstimmung mit Perisph. euryptychus Neum. und Recuperoi Gem. Die Hauptrippen zweigen
sich bei unserer Form viel höher. Die Rippen sind niemals so nach rückwärts zurück-
geschlagen. In der Etage von Am. cordatus ist diese Form im mittelrussischen Jurabecken
sehr verbreitet, doch immer nur in Bruchstücken zu finden. Das abgebildete vollständige
Exemplar gehört dem Bergmuseum zu St. Petersburg. Es stammt aus der Umgebung von
Elatma.

3. Perisphinctes mutatus Trautsch.

Fig. 1—3.

Dmitriewo p. 209. Tab. VII, fig. 1.
Höhe d. l. Umg. . . 0,30 — 0,30 — 0,28.
Dicke d. l. Umg. . . 0,25 — 0,28 — 0,33.
Weite d. Nabels . . 0,43 — 0,36 — 0,33.

Die Form ist sehr häufig im Oolith von elitma und Dmitriewo zu finden.

4. Perisphinetes submutatus Nik.

Tab. I. Fig. 4, 5.

Amm. mutabilis Buch. Beiträge etc. 1840, s. 84.
Amm. mutatus Trauts. Glanzkörn. Sandst. etc. 1862, s. 209, Tab. VI, fig. 2.

Durchmesser ... 68 — 79 — 32.

Höhe d. l. Umg. 0,28 — 0,27 — 0,28.

Dicke d. l. Umg. 0,28 — 0,27 — 0,34.

Weite des Nabels 0,44 — 0,44 — 0,34.

Fläche Form mit gerundeten Umgängen, erreicht nur eine Grösse von 80 Mm. Der Umbo ist flach und weit. Die Windungen umfassen nicht mehr als 1/2 der vorhergehen-

Nouv. Mémoires. Tome XV.

14

Ich habe schon bemerkt, dass unsere Form dem P. curvicosta Opp. am nächsten zu stellen ist. Die Rippen aber sind bei dem ersten viel feiner, auf der Luftkammer niemals so zurückgeschlagen. Die Einschnürungen sind niemals tief und häufig; bei P. submutatus sind sie durchaus selten und flach; ich habe es unter vielen Dutzenden von

Aspidoceras Zittel.

Tab. II. Fig. 9 — 11.

Dieser eigenthümliche Ammonit wurde nur von mir in einem unvollständigen Fragment im Oolithe von Elatma gefunden, besitzt aber alle Merkmale und ist dabei gut genug erhalten, um die Species genau zu bestimmen.

Cosmoceras Waagen.

6. **Cosmoceras Jason Rein.**

Nautillus Jason Reinecke p. 62. Pl. III.

Amm. Jason Zieten Würt. 1830, p. 5. Pl. 4, fig. 6.

Idem Quenst. Cephal. Tab. 10, fig. 4.

*) Alle in meinen Werken angezeichnete Lobenlinien sind von mir selbst möglichst genau auf Wachs-Parier von den Muscheln copirt worden, so dass kein kleiner Zweig, keine Linie überschen worden konnte.

7. Cosmoceras Gulielmii Sow.

Amm. Gulielmii Sow. Pl. 311.
Cosm. Gulielmii Nikitin Jura v. Rybinsk. Tab. IV, fig. 31.
Auch diese Form wurde schon von mir ausführlich beschrieben. Sie kommt bei Elatma seltener zu Tage.

Nautilus Castor Rein. p. 63. Tab. III, fig. 18 — 20.
Cosm. Castor Nikitin Jura v. Rybinsk. Tab. IV, fig. 32.

9. Cosmoceras Duncanii Sow. (non d’Orb.).

Amm. Duncanii Sow. Tab. 157.
Amm. Elizabethae Pratt. Tab. 3, fig. 3.
Die Species ist bei Elatma äußerst selten. Im Jura von Rybinsk, wo ich sie beschrieben habe, so wie in vielen anderen Localitäten des mittelrussischen Jura-Beckens kommt sie häufig vor.

10. Cosmoceras Waldheimii Nik.

Tab. III. Fig. 14.

Durchmesser . . . 77.
Höhe d. l. Umg. 0,33.
Dieke d. l. Umg. 0,28.
Weite des Nabels 0,27.

Eine ganz selten Form in Oolith von Elatna.

11. Cosmorceras enodatum Nik.

Tab. III. Fig. 12, 13.

Durchmesser . . . 60 — 54.
Höhe d. l. Umg. . 0,28 — 0,28.
Dicke d. l. Umg. 0,31 — 0,31.
Weite des Nabels 0,25 — 0,24.

Im Oolithe von Elatma ist Cosmoconeras enodatum ein nicht ganz seltenes Fossil.

Stephanoceras Waagen.

12. Stephanoceras macrocephalum Schloth.

Tab. III. Fig. 15 (a, b). 16, 17.

Amm. macrocephalus Schloth. Petrefact. p. 70.

Idem. Zieten. Wurth. p. 6, pl. 5, fig. 4 (von fig. 1).

Amm. macrocephalus compressus Quenst. Ceph. p. 184. Pl. 15, fig. 1.

Amm. macrocephalus Oppel. Jura p. 547.

Amm. macrocephalus d'Orb. Terr. jurass. Pl. 151.

Durchmesser... 406 — 57.

Höhe d. l. Umg. 0,26 — 0,30.

Dicke d. l. Umg. 0,43 — 0,50.

Weite des Nabels 0,19 — 0,16.

Ein Ammonit mit hohen, dicken und abgeplatteten Umgängen. Die Windungen greifen so vollkommen über die vorhergehenden, dass nur ein ganz unbedeutender Theil derselben zu sehen ist. Der Nabel ist dadurch sehr tief und schmal, nur auf der Wohnkammer leucht das normale Windungsspiral ab und der Nabel wird aufgedeckt. Die Rippen sind zahlreich, verzweigen sich auf der inneren Hälfte der Seitenfläche und verschwinden an der Nabelkante der erwachsenen Exemplare. Die Rippen gehen gerade; sie bilden nur
eine schwache Neigung aber keine Krümmungen nach vorn. Zwischen den sich spalten-
den Rippen sieht man noch an den erwachsenen Exemplaren eine, selten zwei Secundär-
rippen, die an den Seitenflächen allmählich verschwinden.

Wohnkammer der völlig ausgewachsenen Exemplare ist, nach Waagen glatt, hat aber neben der Mündung einige schwache Falten an der Außenfläche. Wie gesagt, die Wohnkammer neigt bedeutend von dem normalen Windungsspiral ab; der Nabel erweitert sich und die Mündung wird schmäler. Länge der Wohnkammer 2/3 Umgang beträgt. Sehr junge Windungen haben nach vorn gekrümmte Rippen wie bei der Gruppe Steph. Tscheffkini.

Nicht ohne Zweifel identifiziere ich unsere Species mit der westeuropäischen und indischen Art. Ungeachtet dessen, dass Waagen uns einige ausführliche Arbeiten über diese Ammonitengruppe gegeben hat, muss man, glaube ich, noch eine weitere Trennung der bedeutenden und sehr variierenden Masse von Formen, die man unter dem Namen Steph. macrocephalum vereinigt, machen. Die Formen von Quenstedt, Waagen und d’Orbigny sind doch so wenig einander gleich, dass es ganz zweifelhaft erscheint, sie als eine Art zu betrachten. Mir ist eine solche Arbeit ganz unmöglich, da wir hier keine vollkommen-
ne Serie der europäischen Formen haben. Die Elatomsche Art ist ein so seltenes Fossil, dass ich, so viel ich weiss, der einzige bin, der davon drei Stücke besitzt.

Wenn man die Wohnkammer abbricht, unser Fossil der Zeichnung von d’Orbigny durchaus gleicht, nur sind die Rippen etwas feiner. Ich selbst erhielt solche Stücke aus der Macrocephalenschicht von Geisingen (Württemberg). Wenn alle westeuropäischen macrocephal Formen genau studiert und bearbeitet sein werden, dann wird man auch entscheiden können, ob unsere Form eine besondere Art, oder die von d’Orbigny abge-
bildete Form sei. Von allen in Waagens Werke erwähnten Formen der Macrocephalen-
gruppe, wie Steph. transiens Waagen und Maya Sow., ist unsere Form ganz entscheidend, abgesondert durch das Verschwinden der Rippen an der Nabelkante der erwachsenen Exem-
plare und durch eine geringere Anzahl der Secundärrippen. Von der Gruppe Steph. cur-
vicostati Waag. (Steph. Ichmae Keys. in deren Zahl) und der Gruppe Steph. Tscheffkini unterscheidet sie sich durch gerade, nicht gekrümmte Berippung. Die Gruppe Steph. tu-
midum Waag. hat weit dickere Windungen und Berippung.

Tab. III. Fig. 18, 19.

Nautilus tumidus Rein. Maris prot. etc. fig. 47.
Amm. macrocephalus Ziet. Ver. Würth. pl. 5, fig 1.
Amm. tumidus Ziet. l. c. pl. 5, fig. 7.
Amm. macrocephalus tumidus Quenst. Ceph., p. 183.
Durchmesser 69.
Höhe d. l. Umg. 0,26.
Dicke d. l. Umg. 0,54.
Weite des Nabels 0,48.

Steph. tumidum unterscheidet sich von der Gruppe Steph. macrocephalum durch seine Dicke, durch dickere und schärfere Berippung, die an der Nabelkante nicht verschwindet. Alle andere dicke Formen dieser Gruppe unterscheiden sich durch größere Berippung. Die am nächsten stehende Form Steph. lamellosum Sow. hat viel dickere Rippen und einen etwas weiteren Nabel. Ich muss aber hinzufügen, dass mein Exemplar, welches doch das Einzelstück ist, von meinen schwäbischen Formen dieser Art durch einen in demselben

Nouv. Mémoires. Tome XV.
Alter etwas höheren Durchschnitt ein wenig abweicht. Mein russisches Material ist jedoch so ungenügend, dass ich in dieser Abweichung allein keinen spezifischen Unterschied sehen kann, besonders wenn wir die grosse Variabilität dieser Formen in Anschlag nehmen. Ich besitze aber von Balin (bei Krakau) eine der unsrigen gleiche Form. Was ich bei der Beschreibung der vorhergehenden Form über Waagen's Erforschung dieser Gruppe gesagt habe, ist auch hier anwendbar. Da ich zum Beispiel nicht begreifen kann, wie eine Form der Tab. XXVII, fig. 2 in die Form der Tab XXVI übergeht, da doch die letzte Zeichnung uns eine ganz besondere, um Umbo starkgerippte Form angibt.

Das einzige Elatom'sche Stück befindet sich in meiner Sammlung und wurde aus einer Kalkconcretion des unteren Kellowaythones erhalten.

Amm. lamellosus Sow. Trans. Geol. Soc. Pl. 23.
Steph. lamellosum Waagen Kutch. p. 122. Pl. 33, fig. 1 a, b.

Die dicken, von den Seiten etwas gedrückten Umgänge dieser Form, lassen nur einen engen und tiefen Nabel, der aber etwas weiter als bei Steph. tumidum ist. Rippen sind verhältnissmässig dick, scharf, in der Jugend sich etwas nach vorn biegend, dann aber im Alter ganz gerade. Wohnkammer herippt, nach Waagen einen ganzen Umgang betragend. Lochenlinie unerforscht.

Das einzige von mir erhaltene Stück des Steph. lamellosum ist nicht in so einem Grade der Erhaltung, dass es lohnte, es zu zeichnen. Es ist aber hinreichend gut, um ihn zu bestimmen.

Elatma, unterer Kellowaython. Es ist mir gelungen den vergangenen Sommer ein anderes Stück derselben Art im Gouv. Kostroma zu bekommen.

Tab. IV. Fig. 20—23.

Durchmesser 48 50 70 71 76 110 Mm.
Höhe d. l. Umg. . . . 0,21 0,20 0,23 0,17 0,20 0,23
Dicke d. l. Umg. . . . 0,60 0,84 0,71 0,79 0,66 0,50
Weite d. Nabels. . . . 0,27 0,36 0,43 0,35 0,34 0,33
Diameter d. Nabelkante 0,56 0,57 0,57 0,52 0,51

schnürungen und der früheren Mündungen. Diese Speren, die doch ganz seltsam für den Genus Stephanoceras er scheinen, sind sehr unbeständig.

*) Hyatt (sich unten die Literatur) hat sicher mehrere Species unter dem Namen Steph. subla eva verstanden und beschrieben.

Ammon. coronatus Bruguière. Encycl. méth. pag. 43. № 23.
 idem Keyserl. Tab. 20 fig. 11, 12.
 idem d’Orb. Terr. jurass. Tab. 168, fig. 5—8.
Amm. aniceps ornati Quenst. Ceph. Tab. 14, fig. 5.
 idem Quenst. Jura p. 337, tab. 70, fig. 22.

Steph. coronatum Neum. Ornathenthone v. Tschulkowo p. 342 Tab. 25, fig. 1, 2 (non 3.)

Durchmesser. 70 — 169 — 46.
Höhe d. l. Umg. . . . 0,21 — 0,24 — 0,23.
Dicke d. l. Umg. . . . 0,86 — 0,66 — 0,87.
Weite d. Nabels . . . 0,38 — 0,36 — 0,37.
Diameter d. Nabelkante. 0,60 — 0,62 — 0,63.

Diese gut bekannte und verbreitete Species erreicht bei Elatma eine monströse Grösse von fast einem Meter im Durchmesser, doch ist sie so schlecht erhalten, dass man kaum einige ungenügende Bruchstücke davon kriegen kann. Ich kenne nur zwei etwas vollkommene Exemplare, die ich messen konnte.

Die Nabelkante läuft durch den ersten Lateralsattel, nur bei den völlig erwachsenen Formen durch den zweiten Laterallobus.

Von den am nächsten stehenden Formen, einerseits Steph. Blagdeni Sow., anderseits Steph. planula d’Orb. (Wagneri Opp.) unterscheidet sich unsere Art durch zweiteilige Rippen und durch einen viel tieferen Nabel, was besonders in der Jugend beobachtet wird.

Tab. IV. Fig. 24 a, b.

Steph. coronatum Neum. Tschulkowo. Tab. XXV, fig. 3.

<table>
<thead>
<tr>
<th>Durchmesser</th>
<th>121</th>
<th>72</th>
<th>66</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe d. l. Umg.</td>
<td>0,25</td>
<td>0,29</td>
<td>0,30</td>
<td>0,25</td>
</tr>
<tr>
<td>Dicke d. l. Umg.</td>
<td>0,16</td>
<td>0,54</td>
<td>0,74</td>
<td>0,72</td>
</tr>
<tr>
<td>Weite d. Nabels.</td>
<td>0,35</td>
<td>„</td>
<td>„</td>
<td>0,40</td>
</tr>
<tr>
<td>Diameter d. Nabelkante</td>
<td>0,46</td>
<td>0,50</td>
<td>0,58</td>
<td>0,62</td>
</tr>
</tbody>
</table>

Diese auch in Westeuropa mit Steph. coronatum in derselben Zone vorkommende Form unterscheidet sich schon in den jungen Windungen durch bedeutend höhere und minder dicke Umgänge, wodurch auch der Nabel geöffneter wird. Der erwachsene Zustand ist aber bei beiden Formen ganz verschieden.

Während Steph. coronatum auch dann seine Dicke behält und kugelig bleibt, wird Steph. Renardi flach. Die Windungen werden dann hoch und von den Seiten zusammengedrückt. Die Spiral der Nabelkante erweitert sich bedeutend zur Wohnkammer hin, wodurch die Knotenreihen ganz offen werden, was bei Steph. coronatum nicht der Fall ist, da bei dem letzteren die Wohnkammer kaum bemerkbar von der normalen Windungsspiral abweicht, von aussen immer abgeplattet und nach beiden Seiten erweitert bleibt.

Lobenlinie von derjenigen des Steph. coronatum nicht zu unterscheiden.

So ein erwachsenes Exemplar des Steph. Renardi erinnert an Steph. planula d’Orb. und ist als Zwischenglied derselben zu betrachten.

Elatma Oolithe, sowie in Gouvernement Rjasan. Ich habe ein hübsches Exemplar davon auch aus Frankreich (Sarthe) bekommen.

Die Beschreibung siehe im letzterwählten Werke.
In der Umgebung von Elatma ist dieses Fossil durchaus selten.

Tab. V. Fig. 26 a, b, 27.

Diese im Oolithe von Elatma gewöhnlichste Form wurde auch von mir eingehend
beschrieben. Ich gebe hier noch die Zeichnung eines mittelgrossen Exemplars, so wie
einer Lobenlinie eines mehr erwachsenen Stückes.

Tab. V. Fig. 28 — 30.

Amm. Tschekfinski var. stenolobus Keys. Petschora p. 329. Tab. 20, fig. 7. Tab.
22, fig. 13, 14.

<table>
<thead>
<tr>
<th>Exemp. v. Petschora.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser. 102 — 58 — 88.</td>
</tr>
<tr>
<td>Höhe. d. l. Umg. . 0,19 — 0,32 — 0,20.</td>
</tr>
<tr>
<td>Dicke. d. l. Umg. . 0,59 — 0,36 — 0,62.</td>
</tr>
<tr>
<td>Weite. d. Nabels . 0,20 — 0,20 — »</td>
</tr>
<tr>
<td>Diam. d. Nabelkante. 0,49 — » — 0,51.</td>
</tr>
</tbody>
</table>

Diese Form, welche sicher der Gruppe Steph.Tschekfinski angehört, unterscheidet sich von
ten Gliedern dieser Gruppe durch einen offenen weiten Nabel, wodurch sie ein flacheres
ausschen hat. Die Rippen sind so scharf ausgeprägt wie bei dem typischen Steph. Tschek-
finski und verschwinden in demselben Alter (bei 70—80 Mm. im Durchmesser). Die junge
Muschel ist flach scheinenzellig. Die Rippen sind hier dichotom oder haben häufiger
ein, zwei, oder im Alter sogar drei Secundärrrippen zwischen den Hauptrippen. Die Be-
rrippung ist etwas nach vorn geneigt und verschwindet mit dem Alter von Nabel aus,
wird aber auf der Aussenseite dicker und flacher.

Einen ganz besonderen Unterschied zeigt uns die Lobenlinie des Steph. stenolobum,
wie es schon Keyserling bemerkt hat, da diese Lobenlinie sich dem Typus Macrocephali
ähnert. Sie ist durchaus der des Steph. tumidum gleich. Die Haupteigentümlichkeit be-
steht in Seitenloben, welche eng und lang sind.

Von dieser nordrussischen Form fand ich drei Stücke im Oolithe von Dmitriewy-
Gory. Ich kenne sie jetzt auch aus anderen Localitäten der Moskauer Jura, dennoch ist
sie im mittelrussischen Jura-Becken überall selten.

Es ist beachtungswert, dass Steph. stenolobum die Gruppe Steph. Tschekfinski mit
einer ganz eigenthümlichen Form aus dem nördlichen Ural verbindet, welche Eichwald als Amm. sagittata beschrieben hat. (Leth. ross. Tab. 35, fig. 1.) Die inneren Windungen dieser Form, wie ich mich selbst im Bergmuseum zu St. Petersburg überzeugen konnte, sind ganz der Gruppe Steph. Tschekini gleich. Die flache scheibenförmige Wohnkammer aber gibt dem Fossil ein ganz anderes Aussehen.

Harpoceras Waagen.

Amm. hecticus lunula Quenst. Ceph. p. 117, Pl. 8, fig. 2.

Amm. punctatus Opp. Jura p. 333.

Amm. hecticus lunula Quenst. Jura p. 545, Pl. 72, fig. 7. (non Amm punctatus p. 544, Pl. 71, fig. 21.

Amm. Brighti d’Orb. Géol. d. l. Russie. Tab. 33, fig. 9, 10.

Amaltheus Montf.

Amm. juniferus Phill. Geol. of Jorksh. p. 113, Tab. 6, lig. 23.
Amm. juniferus Leckenby p. 11.
Amalthe. Gadriusus Nikit. 1878 p. 120.

Ein bedeutendes Erinnerstück dieser Form wurde von mir im Oolithe von Dmitriewy-Gory gefunden. Das Stück stellt uns einen Halbkreis vor, ist ganz mit Luftkammern gesättigt und hat etwa 90 Mm. im Durchmesser. Alle Kennzeichen, die wir in der Abbildung von d’Orbigny haben, sieht man genügend auf meinem Exemplare, um die Species genau zu bestimmen.

Die Lobenlinie ist stark zerschnitten. Die Loben und Sättel sind länger und schmäler als es bei d’Orbigny gezeichnet, was dadurch zu erklären ist, dass d’Orbigny eine vergrösserte junge Lobenlinie wiedergegeben hat. Die allgemeine Form der Lobenlinie ist dieselbe. Der Aussenlobus ist breiter als der Hauptlateral, ihre Länge ist aber fast dieselbe. Der Radius des Aussenlobus schneidet den Hauptlaterallobus nur wenig ab. Der zweite Lateralsättel ist dickhorm.

Fig. 25. a, b.

Amm. Mariae d’Orb. Terr. jurass. P. 486, pl. 179, fig. 1—6 (non 7, 8, 9).

Nouv. Mémoires. Tome XIV.
Durchmesser... 38 — 62
Höhe d. l. Umg. 0,32 — 0,32
Dicke d. l. Umg. 0,42 — 0,48
Weite d. Nabels 0,37 — 0,29

Elatma im Oolithe, sowie in einigen Localitäten der Moskauer Kellowayformation.

24. Amalth. sp.

25. Amalth. vertebralis Sow.

Amm. vertebralis Sow. Pl. 165.
Amm. cordatus d’Orb. Terr. jurass. Pl. 194, fig. 2, 3.
 idem d’Orb. Géol. d. l. Russie Pl. 34, fig. 3, 4.
Amm. cordatus var. pinguis Rouill. 1846 Pl. A, fig. 1.
Amalth. vertebralis Nikit. 1878 p. 145.
Siehe die Beschreibung in meinem letzterwähnten Werke. Die Art ist bei Elatma im Oxford-Thone selten.

Amalth. tenuecostatus Nikit. 1878 p. 146.

Ebenda auch selten.

27. *Amalth. cordatus* Sow.

Amm. cordatus Sow. Pl. 17, fig. 2 und 4.

idem d’Orb. Géol. d. l. Russie Pl. 34, fig. 1, 2.

Amalth. cordatus Nikit. 1878. p. 143.

Ebenda, etwas häufiger als die vorher erwähnten Arten derselben Gruppe.

Ausser den vielen Elatom’schen Formen, welche d’Orbigny in der „Géologie d. l. Russie“ beschrieben und abgebildet hat, steht bei ihm dort noch *Amm. okensis*. Meine eigenen Forschungen haben mir gezeigt *, dass diese Art den oberen Schichten der Juraformation Russlands angehört. Da aber keine Spur dieser Schichten irgendwo in der Umgegend von Elatma gefunden wurde, so muss der *Amm. okensis* als Elatom’sche Species gestrichen werden.

1) *Amm. triplicatus* Eichw. (non Sow.)—unser Perisph. submutatus Nikit.

2) *Amm. modiolaris* Eichw. (non Lwyd)—Steph. Elatmae Nikit.

3) *Amm. okensis* (non d’Orb.). Unter diesem Namen liegt wieder ein kleines Stück (15 Mm.) von Perisph. submutatus Nikit.

4) *Amm. polygyrus* befindet sich nicht in den Sammlungen von Eichwald. Seine Beschreibung ist ungenügend, um irgend welche Schlüsse daraus zu ziehen.

5) *Amm. virgatus*. Unter diesem Namen liegt in der Sammlung von Eichwald ein äusserer Abdruck des Cosm. Jason, der nur einen sehr entfernten Eindruck der bekannten

*) S. Die Jura-Ablagerungen von Rybinsk, etc.

NAUTILIDAE

Nautilus.

Fig. 35 a, b, c.

Die Scheidewände sind im umbonalen Theil kaum nach vorn gerichtet, auf den Seitendflächen zeigt sich eine breite schwache Concavität; dann folgt beim Uebergange auf die Aussenfläche eine starke Wölbung und in der Mitte derselben von neuem eine leichte Concavität. Auf der Innenseite der Scheidewände zeigt sich eine centrale schwache Einbuchtung.

Der Siphon bedeutend unter der Mitte.

Die unserer Art am nächsten stehenden Formen unterscheiden sich: Naut. clausus
d'Orb., durch die Lage des Siphon, durch eine bedeutendere Concavität der Scheidewände auf den Seitenflächen, durch die Abwesenheit einer solchen auf der Aussenfläche. Nautilus Baberi Morris et Lycect durch viereckige niedrigere Windungen (Die Lage des Siphon ist hier unbekannt.) Nautilus subtruncatus Morris et Lycect hat auch niedrigere Windungen, eine andere Gestalt der Scheidewände (Der Siphon wieder unbekannt,) und Nautilus giganteus, d' Orb., dorsatus Roem, hexagonus Sow. (non d'Orb.) haben auch einen eckigen Abriss. Von der Mehrzahl der jurassischen Species unterscheidet sich unsere Art durch völlig geschlossenen Nabel und niedrige Lage des Siphon.

Im Oolithen von Elatma habe ich nur ein Stück davon erhalten, und, so viel ich weiss, ist es eine Unica.

Fig. 33, 34 a, b.

Die Scheidewände zeigen einen gleichmassig welligen Umriss. Sie sind im Nabeltheile convex und flachen in der Seitenfläche eingedrückt, dann wieder beim Übergange auf die Aussenfläche gewölbt, auf welcher letztener sie von neuem eine leichte Concavität zeigen. Auf der Innenfläche der Umgänge sind die Scheidewände ein wenig eingedrückt.

Der Siphon liegt etwas höher als die Mitte des Durchschnittes. Die Lage des Si- phons, die Form des Nabels und der Scheidewände und der Figur des Durchschnittes unterscheiden N. Wolgensis von allen mir bekannten jurassischen Arten dieser Gattung. So bei Naut. hexagonus d'Orb. (callovensis Opp.), als eine am nächstenstehende Form, der Nabel ist offen, die Scheidewände weniger gekrümmt und der Siphon liegt höher.

Im Oolithen von Elatma häufiger, als die oben beschriebene Art. Ich kenne da- von schon über ein Dutzend Stück.

Leth. ross. II, p. 1028, Tab. 34, fig. 1—2.

Diese Form, von der nur der innere Abruck bekannt ist, unterscheidet sich deutlich durch den fünfleckigen Durchschnitt mit fast scharfen Rändern, durch weiten Nabel und hohen Siphon. Die Scheidewände sind wellenförmig und haben eine Concavität auf der Aussennfläche, statt hier, wie allgemein, convex zu sein. Da die Nautiliden sehr selten in unserem Jura vorkommen, habe ich noch nirgends so eine Form gefunden. In Eichwald’s Sammlungen befindet sich diese Art auch nicht, so dass mir, wenn wir die Ungenaugkeit der Abbildungen und Beschreibungen von Eichwald in Betracht nehmen, sogar die Existenz solcher Form zweifelhaft erscheint.

\[H E L E M N I T I D A E. \]

Belemnites.

31. Bel. subabsolutus Nik.

Fig. 31 a, b, 32.

Bel. absolutus d’Orb. (non Fisch.) Géol. d. l. Russie p. 421. Tab. 29, fig. 1—9.
Bel. subabsolutus Nikit. Jura v. Rybinsk. etc. S. 94.

gebildet, ist die Folge des Abfalls der oberen Kalkschichten am vorderen Theile der Muschel. Die Form wird selten über 130—140 Mm. lang.

Die Beziehung dieser Form zum Bel. absolutus Fisch, sowie die Vergleichung des Bel. subabsolutus mit ihm nahe stehenden Arten siehe meine oben erwähnte Arbeit.

Bel. subabsolutus befindet sich bei Elatma und Dmitriewgory in den unteren, so wie in den oberen Kellowayschichten sehr selten.

32. Bel. extensus Trauts.

Fig. 36, a, b. 37, 38.

Bel. extensus Nikit. Jura v. Rybinsk. etc. S. 94.

In senkrechter Richtung beschränkt sich, wie es scheint, das Verbreitungsgebiet dieses Belenmites auf die Ober-Kelloway-Etagen, wo er in Menge vorkommt. Mir ist es nicht vorgekommen, diesen Belenmites in den Unten-Kelloway-Schichten mit Steph. macroceph. oder in den aller untersten Oxfordschichten zu finden.

dass Prof. Müller Gelegenheit gegeben (1823 Geol. Soc. of Lond.) aus ähnlichen Formen eine besondere Gattung Actinocamax zu bilden, die nach d’Orbigny’s Work (1842) und besonders nach dem von Phillips (1865)—ihre Bedeutung eingebüsst hat.

Herr Eichwald hat noch einige andere Belenmiten aus Elatma beschrieben. Das genaue Studium seiner Sammlungen führten mich zu folgenden Schlüssen darüber:

1) Bel. semihastatus (non Blanv.) ist unzweifelhaft ein junges Exemplar von Bel. subabsolutus, da diese Species auch in der Jugend eine leichte Zusammenziehung des Rostrum bei dem Gipfel der Alveola zeigt.

2) Bel. Beamontianus (non d’Orb.) ist ein echter Bel. subabsolutus. Der Unterschied wurde schon von mir angegeben.

4) Bel. bicanaliculatus (non Blanv.). Die Musterstücke, welche unter diesem Namen in Eichwald’s Sammlungen liegen, haben keine Seitenrißchen und sind nichts mehr als junge Bel. subabsolutus.

5) Bel. russiensis (non d’Orb.). Unter diesem Namen, der, wie bekannt, einem Belenmiten aus den oberen russischen Jurasschichten angehört, liegt in der Sammlung von Eichwald ein kleines Stück 40 Mm. lang, über welches gar nichts zu sagen ist. Der eigentliche Bel. russiensis kann doch keineswegs bei Elatma existiren, da dort die oberen jurassischen Schichten fehlen.

6) Bel. subfusiformis Ein junges Exemplar, das die Gestalt von Actinocamax hat. Eine solche Form kann, wie schon oben bemerkt wurde, vielen Species angehören.

Nov. Mémoires. Tome XIV.

17
7) *Bol. dilatatus* (non Blanv.). In der Sammlung von Eichwald liegt unter dieser Bezeichnung ein von Wasser flach abgeriebenes Exemplar, das für irgend eine Bestimmung nicht brauchbar ist.

VI. Die Literatur.

Bruguière. Encyclopédie méthodique 1789.

Oppel. Die Juraf ormation Englands, Frankreichs u. dessüdwestlichen Deutschlands. 1856—58.

Phillips. Illustrations of the geol. of Yorkshire 1829.

Quenstedt. Der Jura. 1858. Tübingen.

ERKLÄRUNG DER ABBILDUNGEN.

(Tab. I.) Tab. VIII.

Fig. 1. *Perisphinctes mutatus* Trautsch. Nur aus Laufkammern bestehendes Exemplar. Dmitriewy-Gory.

1. Ein kleines Individuum desselben. Elatma.
2. Lobenlinie desselben.
4. Dessn Lobenlinie.

(Tab. II.) Tab. IX.

Fig. 7. *Perisphinctes fusiatus* Opp. Ein Stück mit dem Anfang der Wohnkammer. Dmitriewy-Gory.

8. Lobenlinie desselben.
10. Innere Windung desselben.
11. Dessn Lobenlinie.

(Tab. III.) Tab. X.

Fig. 12. *Cosmoceras evolutum* Nik. Elatma. Das Exemplar mit fast vollkommener Wohnkammer.

13. Lobenlinie desselben.
15. a, b. *Stephanoceras macrocephalum* Schlooth. mit einem Theil der Wohnkammer. Elatma. Die Ripp
pen müssten etwas minder nach vorn geneigt wiedergegeben werden.
16. Lobenlinie desselben.
17. Lobenlinie eines jüngeren Exemplar's desselben. Elatma.
19. Lobenlinie desselben.

(Tab. IV.) Tab. XI.

Fig. 20. *Stephanoceras Elatiae* Nik. Ein vollkommen erwachsenes Stück. Elatma.

21. a, b. Idem ohne Wohnkammer.
22. a, b. Innere Windungen davon.
23. Lobenlinie desselben.
24. a, b. *Stephanoceras Renardi* Nik. mit einem Theil der Wohnkammer. Elatma.
(Tab. V.) Tab. XII.

Fig. 25. a, b. *Amaltheus Mariae* d'Orb. Elatma.
 27. Lobenlinie desselben.
 30. Lobenlinie desselben.
 31. a, b. *Belenmites subabsolutus* Nik. Elatma.
 32. Ein junges Individuum desselben. Elatma.

(Tab. VI.) Tab. XIII.

Fig. 33. *Nantilus Wolgensis* Nik. Ein vollkommenes Stück. Elatma.
 34. a, b. Ein junges Exemplar desselben. Elatma.
 35. a, b, c. *Nantilus Okensis* Nik. mit einem Theil der Wohnkammer. Elatma.
NOUVEAUX MÉMOIRES
DE LA
SOCIÉTÉ IMPÉRIALE DES NATURALISTES
DE MOSCOU.

TOME XIV
formant le Tome XX de la collection.

Livraison 3.

Avec 2 planches.

MOSCOU.
1882.
NOUVEAUX MÉMOIRES
DE LA
SOCIÉTÉ IMPÉRIALE DES NATURALISTES
DE MOSCOU.

TOME XIV
formant le Tome XX de la collection.

Livraison 3.

Avec 2 planches.

MOSCOU.
Imprimerie de l'Université Impériale, (M. Katkoff),
Strastnoï boulevard.
1882.
ÜBER DEN MUTHMASSLICHEN GESCHLECHTSAPPARAT
VON POTÈRIOCRINUS MULTIPLEX TRD.

FESTSCHRIFT
zum
50-JÄHRIGEN DOCTORJUBILAEUM
SR. EXCELLENZ DES VICEPRÄSIDENTEN
der
KAISERLICHEN MOSKAUER GESellschaft DER NATURFORSCHER
HERRN KARL V. RENARD
GEWIDMET
von
H. Trautschold.
UEBER DEN MUTHMASSLICHEN GESCHLECHTSAPPARAT

VON

POTERIOCRINUS MULTIPLEX TRD.

VON

H. TRAUTSCHOLD.

Bei der Abtheilung der Tesselatae der Crinoidea kommen gewisse Körperteile vor, die theils nicht bei allen Individuen derselben Species entwickelt sind, theils sich durch ihre Form und Stellung sehr wesentlich von den übrigen Theilen des Thiers unterscheiden. Diese Verschiedenheit in der Form und Stellung weist auch auf eine verschiedene Bestimmung hin. Jedenfalls muss die Rolle, welche diese Organe in den Lebensverrichtungen gespielt haben, eine nicht unwichtige gewesen sein, da man voraussetzen darf, dass ein mit so verschiedener Form ausgestatteter Körpertheil nicht bloss zum Schmuck an seine Stelle gesetzt worden ist. — Stiel, Kelch, Arme zeigen überall symmetrischen Bau; der Stiel hat durchweg gleichartige Glieder, die Kelchplatten fügen sich nach einer gewissen Ordnung gleichmassig aneinander, die Arme bestehen aus Reihen gleichmassiger Glieder von analogem Bau. Eine Ausnahme von dieser allgemein herrschenden Symmetrie machen nur die bei gewissen Geschlechtern existirenden Analplatten des Kelchs, die sich an der Stelle befinden, wo zwischen der Basis der Arme Raum gefordert wurde zum Auswerfen der unverdaulichen Bestandtheile der Nahrung. Aber auch diese Analplatten haben eine den übrigen Platten analoge Structur und eine nur wenig abweichende Form.

Greifen dürfte das Organ schwerlich gediengt haben, noch weniger als Speiseröhre, aber als Auswurfskanal kann es in manchen Fällen Verwendung gefunden haben. Von den gebrauchten ist der neutralste terminus Angelins tubus ventralis, da hier wenigstens dem Organ keinerlei bestimmte Funktion zugewiesen wird.

Dieser tubus ventralis fällt zuweilen durch seine Grösse, wie auch durch seine eigenthümliche Form stark in die Augen, und er ist deshalb auch der Beobachtung selbst der ältesten Forscher nicht entgangen. Schon J. S. Miller *) bildet die proboscis von Actinoerinus (l. II, f. 1, 2, 6.) und von Platyerinus (f. 7.) ab, wobei er letzteres genus für einen Actinoerinus hält, dem die proboscis nach Erschaffung der Muskeln auf den Boden des Kelchs herabgesunken ist (p. 102). George Cumberland **) bildet gleichfalls zwei Kelche von Actinoerinus (amphora Cumb.) mit proboscis ab (t. A. und C.) und vergleicht sie mit einem donnarlichen Fortsatz (p. 39). Nach Massgabe des vermehrten Materials erweiterten sich die Kenntnisse, und schon De Koninck und Le Hon ***) konnten verschiedene Arten von Rüsseln unterscheiden. Sie sagen (p. 57), dass manche Crinoideen einen mehr oder weniger langen Rüssel haben, der sich entweder nahe der Mitte der Kelchdecke befindet oder nahe dem Rande, und dass andere gar keinen Rüssel gehabt zu haben scheinen, sondern nur eine einfache Öffnung zwischen dem Scheitel und dem Rande der Kelchdecke. Andere, fahren sie fort, haben eine Öffnung zwischen zwei Armen und zwischen den Kelchplatten und denen der Kelchdecke. Indem sich diese Autoren, die gute Abbildungen von den betreffenden Theilen gegeben haben, sich auf die in Belgien häufiger Actinoerinen und Platyerinen beziehen, beschrieben sie die proboscis als aus glatten, schagrinirten oder knollen polygonalen Platten bestehend, die durch ihre Vereinigung eine an ihrem Ende geschlossene Röhre mit weiter Höhlung darstellen. Obgleich die Austin's ****) weniger gute Abbildungen geliefert haben, so sind sie doch die ersten von allen die Crinoideen behandelnden Autoren, welche zwei verschiedene Formen der proboscis, einem und denselben Geschlecht angehörend (Poteriocerinus) beobachtet, beschrieben und abgebildet haben. Nämlich auf t. 10. f. 1. ist P. radiatus mit einer proboscis dargestellt, wie sie die Platyerinus-Arten haben, d. h. eine drehrunde, kogelförnige, aus sechseckigen Platten zusammengesetzte. Auf derselben Tafel aber ist fig. 2. P. quinquangularis mit einer eckigen röhrenförmigen proboscis abgebildet, welche tiefe Querfurchen zeigt, und an der keinerlei Art von Platten sichtbar ist. Die Austin's haben sich auch zuerst eingehender auf Speculationen über die Bestimmung der proboscis eingelassen, ihnen grosse Beweglichkeit zugeschrieben und sie als zur Nahrungsaufnahme

*) A natural history of Crinoidea 1821.

**) Reliquiae conservatae-with descriptions of fossil Eocrinites 1826.

****) Recherches sur les Crinoïdes du terrain carbonifère de la Belgique 1853.

****) T. Austin and T. Austin jun. A. monograph of recent and fossil Crinoidea.
geeignete Organe aufgesucht. Eine „Einspritzung ätzenden Salts zwischen die Schalen der Brachiopoden, und das Aussaugen der Fleischtheile derselben vermittelst der proboscis“ ist eine so gewagte Behauptung (p. 73), dass von den Forschern der Neuzeit schwerlich jemand geneigt sein wird, ihr seinen Beifall zu schenken.

Die Paläontologen, welche sich nach J. S. Miller, den Austin’s und de Koninck mit den Crinoideen beschäftigt haben, sind vor Allen Joh. Müller, L. Schultze, Sumard, James Hall, Meek & Worthen, Angelin, Quenstedt, Wetherby, S. A. Miller, Wachsmuth und Zittel. Aus ihren Schriften, die meist von guten Abbildungen begleitet sind, habe ich die Bemerkungen ziehen können, die auf den folgenden Seiten über die Insertion und die Form der sogenannten proboscis zusammengestellt sind.

Actinocrinus althaea Hall.
- armatus de Kon. & Le Hon.
- costus McCoy.
- formosus Hall.
- longirostris Meek & Worthen.
- multibrachitus Hall.
- polydaeytus Mill.
- probosoedialis Hall.
- stellaris de Kon. & Le Hon.
- triacontadactylus Mill.
- turbinatus Meek & Worthen.
- unicorns Hall.
- Whitei Hall.

Batoocrinus Christii M. & W.
- pyriformis M. & W.
- Verneulianus M. & W.

Strotoocrinus liratus M. & W.

Plateocrinus Austinius de Kon. & Le Hon.
Platycrinus laevis Mill.
" Müllerianus de Kon. & Le H.
" spinosus Aust.
" trigintaetylus Aust.

Die zweite Art von Ventralröhren, nämlich die, welche eine Verlängerung der Analplatten darstellt, und die immer eine seitliche Stellung im Kelch hat, ist bei folgenden Species beobachtet worden:

Lecithocrinus Eifelianus Mull. (Taxocrinus briareus Schultze).
Ctenocrinus pentagonus Aust.
" typus Br.
Poteriocrinus Casei Meek (Dendrocrinus).
" crassus Mill.
" curtus Wirtg. & Zeil.
" pentagonus Aust.
" polydaetlyus Shumard.
" posticus Hall (Dendrocrinus).
" Missouriensis Shumard.
" quinquangularis Aust.
" radiatus Aust.
" rostratus Aust.
Cyathocrinus acinotubus Ang.
" alutaceus Ang.
" longimanus Ang.
" muticus Ang.
" ramosus Ang.
Botryocrinus ramosissimus Ang.
" corallum Ang.
Gissoerinus macradaetlyus Ang.
" nudus Ang.
" punctuosus Ang.
" tubulatus Ang.
" umbilicatus Ang.
Eospirocrinus spiralis Ang.
Crotalocrinus pulcher Ang.
Sieyoerinus econebriformis Ang.
Ophiocrinus crotalus Ang.
Cromyocrinus gracilis Wetherby.

Ihre Form nach lassen sich die Ventralköhren folgendermassen classifiziren:

2. Conoidei, mehr oder weniger conische, aus sechseckigen Platten bestehende Gebilde.

Zu den Fistulosi gehören die Actinoerinen und verwandte Gattungen. Zu den Conoidei gehören Vertreter sehr verschiedener Gattungen, vorzugsweise aber Platycrinus. Die Form der Gyrosi haben nur zwei silurische Genera; die Form der Squamosi zeigen drei silurische Arten und die Form der Angulosi tritt namentlich bei Pteriocrinus auf.

1. Fistulosi.

a. Arten, bei denen cylindrische Ventralköhren vorhanden sind, aus höckerigen polygonalen Platten zusammengesetzt, haben sich bis jetzt folgende gefunden:

Actinoerinus altiaea Hall.
 " formosus Hall.
 " multibrachiatus Hall.
 " polydactylus Mill.
 " proboscidialis Hall.
 " stellaris de Kon. & Le Hon.
 " triacontadactylus Mill.

Strotocrinus liratus M. & W.

Batoerinus Christii M. & W.
 " pyriformis M. & W.

b. Cylindrische Ventralköhren mit polygonalen Platten ohne Höcker weisen folgende Species auf:
Actinocrinus Whitei Hall.
Batoecrinus Verneuilianus M. & W.
Cyathocrinus acinotubus Ang.
Platyecrinus Austinianus de Kon. & Le Hon.
" Müllerianus de Kon. & Le Hon.

c. Glatte cylindrische Ventralröhren ohne sichtbar getrennte Platten (nach den Abbildungen zu urteilen) kommen vor bei:
Actinocrinus armatus De Kon. & Le Hon.
" unicornis Hall.

2. Conoidei.

Mehr oder weniger kegelförmige aus regelmässigen sechseckigen Platten zusammengesetzte Ventralröhren finden sich bei folgenden Arten:

Platyecrinus laevis Mill.
" spinosus Aust.
" triginitiactylus Aust.
Actinocrinus longirostris Hall.
Lecythocrinus Eifelianus Mill.
Cyathocrinus longimanus Ang.
Hypanthocrinus minor Ang.
" regularis His.
Zeaerinus magnoliaoformis Troost.
Ensiporecrinus spiralis Ang.
Gissoecrinus umbilicatus Ang.
Cromyocrinus gracilis Wetherby.
Poterioecrinus radiatus Aust.
" Missouriensis Hall.
" polydaeythus Shumard.
" posticus Hall.

Zu den Arten mit gewundener cylindrischer Ventralröhre, die aus sechseckigen Platten zusammengesetzt ist und mit Querschlitzen versehen, gehören Sicyoecrinus cucurbitaceus Ang. und Botryoecrinus ramosissimus Ang. — Ophiocrinus crotalus Ang. ist ohne Querschlitze.
4. **Squamosi.**

Ventralröhren mit schuppig gelagerten Platten kommen in drei Fällen vor, nämlich bei Gissocrinus macrordaetylus Ang. mit verhältnismäßig grossen viereckigen Platten, G. nudus Ang. mit ähnlichen kleineren Platten und G. punctuosus Ang. Die Abbildung der letzteren Species bei Angelin zeigt zwar nicht die schuppige Structur, aber der Autor erwähnt derselben im Text.

5. **Angulosi.**

Die Ventralröhren sind eckig, mit Querfurchen und zum Theil mit Verzierungen versehen und zuweilen von reihenweis übereinander stehenden Löchern an den Ecken durchbohrt. Diese Form findet sich bei:

- *Poteriocrinus Casei Meek.*
- " crassus Mill.
- " curtus Wirtg. & Zeil.
- " hysteus Hall.
- " multiplex Trd.
- " pentagonus Aust.
- " quinquangularis Aust.
- " rostratus Aust.
- *Dendrocinus longidaetylus Hall.*
- *Gissocrinus tubulatus Ang.*
- *Crotalocrinus pulcher Ang.*

Aus dem Vorstehenden ist ersichtlich, dass die Form der Ventralröhren kein Material für die Zwecke der Classification liefert, wenigstens nicht bei dem gegenwärtigen Stande unseres Wissens von diesen Organen, abgesehen wir zugeben müssen, dass, wie in allen Organismen, sich auch hier die verschiedenen Körperforme in gegenseitiger Correlation befinden.

Es ist wahr, dass die Fistulosi vorzugsweise den Actinocriniden eigen sind, aber auch mehrere Platycrinzen zeigen dieselbe Form der Ventralröhre; andererseits sind bei den Platycrinzen die Conoides gemein, aber auch bei einem Actinocrinus findet sich die Ventralröhre mit regelmässigen sechseckigen Platten, ganz abgesehen von den zahlreichen Gattungen, welche eine ähnliche Ventralröhre haben, aber in ihrem Bau wesentlich von den Actinocriniden und den Platycrinzen abweichen.

Der Benutzung dieser Organe für die Classification stellt sich noch der Umstand entgegen, dass die meisten Individuen einer und derselben Species eine Ventralröhre nicht

Nouv. Mémoires. Tome XIV.
besitzen, und dass man deshalb solche Exemplare in ein auf die Ventralsechskörper gegründetes System einzureihen gar nicht im Stande wäre.

Wie wenig diese Organe für die Classification geeignet sind, beweist namentlich die Abtheilung der Conoidei, unter welche neun verschiedene Genera fallen, die sich in ihrem Bau sehr wesentlich von einander unterscheiden.

Aber da diese Organe doch jedenfalls zur Erreichung eines gewissen Zweckes geschaffen worden sind, auch möglicher Weise gewisse Functionen verrichtet haben, so ist die Frage, ob sich ihre Form, und namentlich ihre verschiedene Form in einer und der selben Gattung der Crinoideen nicht in anderer Richtung genügend mit der Natur dieser Thiere in Einklang setzen lässt.

Aber es giebt auch Ventralsechskörper, die Querschlitzte zeigen, wie die Gyrosa, und andere, die an gewissen Stellen Reihen von Poren haben, und diese geben einen besseren Anhalt, um über ihre Bestimmung sich eine, wenn auch nur hypothetische, Vorstellung zu machen. In Bezug auf längst erloschene Wesen, von denen fast nichts Analoges in der heutigen Lebewelt existirt, haben wir uns ja immer nur mit Vorbehalt auszusprechen, namentlich was die Functionen der verschiedenen Körperteile betrifft.

Dass die Ventralsechskörper, wie die Austin's meinten, als Organ zur Aufnahme der Nahrung gedient hätte, ist selbst dann kaum zuzugeben, wenn die Röhre oben nicht geschlossen war, was aber doch wahrscheinlich, wenigstens bei den Poteriocearis, immer

*) Revision of the Crinoidea 1879. I, p. 111.
der Fall war. Aber eben die Poteriocrininae bedürfen eines solchen Fressorgans gar nicht, da sie in ihren pinnulatae Organe zum Greifen und Zermalmen der Nahrung in höchst vollkommener Ausbildung besitzen und diese pinnulatae auch die zermalme Nahrung in den an der Innenseite der Arme befindlichen die Speiseröhre vertretenden Furchen hinabbefördern konnten. In der Diagnose von Poteriocrinus crassus (p. 69 ihres Werks) sprechen die Austin’s von einem centralen sehr langen und röhrenförmigen Mund, obgleich die Zeichnung (t. 9. f. 1.) dem entschieden widerspricht und deutlich zeigt, dass das in Rede stehende Organ seinen Ursprung in den Analplatten hat, also eine marginale Stellung einnimmt. In der speziellen Beschreibung heisst es, dass die Mundröhre von P. crassus die Länge von 4—5 Zoll erreicht und 2 1/2 Zoll im Umfang hat und dass also diese Thiere wohl ausgestattet waren, um grösseren Raub zu verschlingen, als die meisten übrigen Crinoideaen. Aus der ciürten Abbildung ist wenig mehr ersichtlich, als dass das Organ aus mehreren nebeneinanderliegenden quergestreiften Rohren bestanden zu haben scheint. Andere Figuren sind in dem Werke der Austin’s besser ausgeführt, doch nur in der Ventrallöhre von P. quinquangularis (t. 10. f. 2. a) sind tiefe Querfurchen angegeben, die als Öffnungen aufzufassen sind.

Auch Joh. Müller *) spricht noch von Mundröhre, aber in der Abbildung von Poteriocrinus curtus (t. 2. f. 3) sind bereits zwei Porenräume angegeben, die der Aufmerksamkeit des berühmten Verfassers entgangen zu sein scheinen, da er ihrer im Text nicht erwähnt.

*) Ueber neue Echinodermen des Eifeler Kalks 1857.

**) Monographie der Echinodermen des Eifeler Kalks 1867.
tigen Auffassung Analplatten, und auf ihnen ist die „Altnörre“ aufgesetzt. Fig. 46 t. 5. zeigt das ganz deutlich, und die vorgrößerte Abbildung fig. 4c. demonstriert vorzüglich die elliptischen Öffnungen und die Porenreihen. Wenn also Schultze sagt, dass die Entwicklung der Röhre aus dem Scheitel nicht ersichtlich ist, so ist das dahin zu interpretiren, dass die Entwicklung derselben aus den Analplatten ausserordentlich deutlich ist.

L. Schultze bildet auf derselben Tafel 5. noch eine aus sechsseitigen Platten gebildete „Altnörre“ von grossen Dimensionen ab (f. 7.), und spricht die Vermuthung aus, dass sie wahrscheinlich einem Poteriocrinus angehöre. Wenn das der Fall wäre, so würde das ein schönes Gegenstück liefern zu dem P. quinquangularis mit tubus angulosus und dem P. radiatus mit tubus conoides, und wäre es vielleicht nicht zu gewagt, folgende Hypothese darauf zu gründen.

Da im Allgemeinen die Crinoidea mit Ventralröhre zu den Seltenheiten gehören, und die bei weitem meisten Individuen derselben entbehren, so wäre anzunehmen, dass die Mehrzahl geschlechtslos ist, d. h. keine Reproductionsorgane besitzt. Einzelne Individuen jedoch sind mit einem Generationsorgan begabt, und da dieses in einer und derselben Gattung eine verschiedene Gestalt hat, so lässt sich voraussetzen, dass das eine das männliche, das andere das weibliche genitale darstellt. Da in den Poteriocrinus mit tubus angulosus Reihen von Löchern verhanden sind, die als Ovarialöffnungen aufgefasst werden können, so würden die mit solchen Röhren ausgestatteten Individuen weiblich sein, die mit tubi conidei männlich.—Ich brauche wohl kaum hinzuzeigen, dass ich diese Hypothese mit allem Vorbehalt gebe.

Beschreibung des tubus ventrally von Poteriocrinus multiplex Trd.

Das vollkommenere Exemplar mit dem spiraligen Analfortsatz wurde zuerst von der Vorderseite freigelegt, und von dieser, so wie von der noch mit den Armen versehenen
Hinterseite gezeichnet; nachdem die Zeichnungen angefertigt waren, wurde auch zu der Entfernung zweier Arme der Hinterseite geschritten, um die Verbindung der Röhre mit den Analplatten klar zu legen, und die Darstellung der vollen Hinterseite zu ermöglichen.

Das auf solche Weise möglichst von Gestein gereinigte Organ stellt eine Art eckiger Röhre dar, deren Seiten mit quer verlaufenden Erhöhungen, und deren Kanten mit Löchern versehen sind. Das Gebilde selbst besteht aus spathigem Kalk wie die übrigen Theile des Fossils und zeigt bei den beiden spiral gewundenen Individuen anderthalb Windungen, deren Ende zugerundet ist oder, was dasselbe ist, die in einen Blindsack verlaufen. Die auf den Seiten verlaufenden Erhöhungen bilden ein steiles Zickzack und sind manchmal nicht ganz regelmäßig untereinander verbunden. Die vorspringenden Kanten sind oberhalb etwas abgeflacht, und sind mit einer Reihe von Löchern versehen, von denen ungefähr zwei auf einen Millimeter kommen. Während die nach innen liegenden Kanten glatt sind und ein zusammenhängendes Ganze darstellen, sind die nach aussen liegenden meist wie gekerbte oder eingebrochen, die Kerben weisen auf die in der Mitte der Kante befindlichen Löcher, und deuten auf eine gliedartige Struktur der Röhre, obgleich dieselbe auf den Seitenflächen nirgend deutlich hervortritt. Die Befestigung der Ventralröhre an die Analplatten ist ziemlich unvermittelt. Auf die drei in einer Querreihen stehenden oberen Analplatten (sonst sind nur drei oder vier Analplatten vorhanden, bei den in Rede stehenden Exemplaren sind deren sechs) folgt sogleich die mit den charakteristischen Querfalten besetzte Röhre. Diese legt sich seitlich an die untersten Fiederglieder, so dass diese scheinbar einen Theil der Röhre zu bilden scheinen, aber auch weiter oben wird die Verbindung mit den unteren Gliedern der höheren pinnulae durch eine körnige Masse vermittelt, welche einem Haufen Eier nicht unähnlich sieht, der vor Kurzem aus der Ventralöhre ausgetreten ist, und theilweise die rechte Kante der Röhre bedeckt (rechts auf der Abbildung von der Vorderseite). Dass diese körnige Masse nur dazu gedient haben sollte dem Organ Stütze und Halt zu geben ist wegen der Form nicht wahrscheinlich, um so weniger, als auf der Hinterseite der Röhre sich ähnliche Körper in ähnlicher Stellung befinden. Die Windungen der Ventralöhren sind untereinander verbunden, was bei dem etwas niedergedrückten vollkommenen Exemplar auf der Vorderseite ganz deutlich hervortritt. Die Abbildung von der Hinterseite des Fossils zeigt, dass die Sculptur der Röhre auf allen Flächen derselben dieselbe ist, und dass alle Kanten von Löchern durchbohrt sind.

Wenn auch bei dem zweiten vorliegenden Exemplar die Einzelheiten der Sculptur auf der spiralen Röhre wegen des deckenden härteren Gesteins weniger deutlich hervortreten, so ist doch die allgemeine Form ganz dieselbe, wie bei dem eben beschriebenen Individuum. Es sind gleichfalls anderthalb untereinander verwachsene Windungen vorhanden, die in einem Blindsack endigen; die durchlöcherten Kanten springen ebenso vor, und die Verbindung mit den Analplatten ist ebenso deutlich nachweisbar, wie an dem bestehaltenen Exemplar, so dass an der Identität kein Zweifel haftet.
Bei dem guten Exemplar von P. multiplex mit frei aufsteigender Röhre ist die Erhaltung so vollkommen, und liess sich die Befreiung vom Gestein so vollständig erreichen, dass sich auf zwei der Außenflächen die kleinsten Einzelheiten der Sculptur erkennen lassen. Nichtsdestoweniger ist die Röhre nicht vollständig, sondern am oberen Ende abgebrochen. An diesem Ende angeschliffen, zeigt sich der Durchschnitt der Röhre fast quadratisch. Der Bau der Röhre ist im Allgemeinen derselbe wie bei dem oben beschriebenen spiralen Organ. Auf den Kanten befinden sich Löcher, die etwas in die Länge gezogen sind, so dass sie sich der Form eines Schlitzes nähern. Die obere Seite der Röhre ist eben solchen zickzackförmigen queren Erhöhungen bedeckt, wie sie sich an der spiralen Röhre finden; die Fläche der rechten Seite zeigt eine etwas veränderte Sculptur, indem nämlich von der oberen und unteren Kante gabelige Erhöhungen nach der Mitte der Fläche zulaufen, die in der Mitte selbst sich zu sternförmigen Erhöhungen mit 5 — 6 fingerförmigen Strahlen umbilden, was indessen keine wesentliche Verschiedenheit, sondern nur eine Modifikation der zickzackförmigen Figuren darzustellen scheint. Im Querschnitt erscheinen die Wände der Röhre dünner, und sind innerhalb derselben Kanäle wie bei Crotalocrinus pulcher nicht wahrzunehmen.

Das kleinste der vorliegenden Exemplare stellt eine knieförmig gekrümmte eckige Röhre dar, deren Ende abgebrochen ist. Es ist daher zweifelhaft, ob die Röhre nicht ursprünglich eine spiral gewundene war. Die Vorderseite des Organs mit drei Seitenflächen sieht dem oben beschriebenen ersten Individuum sehr ähnlich. Auch die Sculptur ist ganz dieselbe, es fehlen weder die charakteristischen Zickzackfiguren noch die vorspringenden Kanten, bei denen freilich die Löcher noch nicht ausgebildet sind.

Verwandte Formen.

Von den Crinoideen, die eine Ventralröhre haben, kommen bezüglich der mehr oder weniger ähnlichen Form und des ähnlichen Baues nur wenige in Betracht. Die nächsten Verwandten sind mehrere Species der Gattung Potierocrinus, wie P. rostratus, P. pentagonus, P. quinquangularis und P. curtus, demnächst Crotalocrinus pulcher, weniger nah steht Gissoerinus tubulatus und nur durch die gewundene Form mit blind sackähnlichem Ende Sieyoerinus eucurbitaceus.

Als Geschlechtscharakter der Gattung Sieyoerinus gibt Angelin *) p. 23. an: analia superiora tubum ventrale conicum. Als Charakter der Species S. eucurbitaceus führt er an: anale secundum radialibus majus, reliqua in tubum erassum, proboscidiformem, apice incurvatum, connata. Der zwei Reihen Querschlitzte, welche sich auf der Zeichnung

*) Iconographia Crinoideorum 1878.
finden, erwähnt Angelin im Text nicht, ebensowenig der sechseckigen Platten, aus denen die cylindrische Röhre zusammengesetzt ist. Die Querschlitzte, die sechseckigen Platten und die Cylinderform schliessen eine nähere Vergleichung mit der Ventralröhre von Pot. multiplex aus. Den Analfortsatz von Crotalocrinus beschreibt Angelin folgendermassen (p. 26.): tubus analis excentricus, juxta basin duorum brachiorum positus; variat breviusculus, late conicus l. longissimus angustus; suboctangularis, acuminatus, basis canali centrali amplio, octoplicato. Über den Analfortsatz der Species Cr. pulcher sagt Angelin im Text gar nichts, während er doch viele Figuren davon gibt. Es ist das um so mehr zu bedauern, als man nicht recht klar darüber wird, ob die Poren nach aussen münden, wie es nach den Abbildungen auf t. 8. und t. 17. scheint, oder ob die Poren Gänge innerhalb der Platten sind, welche nicht die Wände des Analfortsatzes durchbohren, sondern parallel mit ihnen von unten nach oben aufsteigen, wie es nach t. 25. f. 8. u. 13. den Anschein hat. Indessen sind auf t. 17. reihenweise geordnete Löcher deutlich abgebildet, desgleichen Querfurzen, was auf Verwandtschaft mit dem Fortsatz unseres Pot. multiplex deutet würde, aber das nicht Gewundene, die achteckige Form, die viereckigen Platten und die Abwesenheit jeder Sculptur auf den Aussenflächen unterscheiden den Analfortsatz von Crotalocrinus scharf von dem Fortsatz des Pot. multiplex.

Wichtiger als die beiden erwähnten Gattungen sind für die Vergleichung verschiedene Species der genus Poteriocrinus, und liefert für dieselbe das Werk der Austin’s das reichste Material. Natürlich ist hierbei die Species P. radiatus zu eliminiren, da diese Form der Ventralröhre bei den Poteriocrinern von Mjatschkowa noch nicht angetroffen ist. Aber die Ventralröhre von P. quinquangularis Aust. ist ein dem Analfortsatz von P. multiplex analoges Organ. In der Diagnose der Species ist von den Austin’s gesagt (6): „Mund rüsselartig und central“. In der Beschreibung heisst es: „die proboscis ist gross und central, der Mund liegt an der Spitze, die Oberfläche der Mundröhre ist bandartig quergestreift, die Streifen des einen Plattenbandes vereinigen sich an den Nähten mit denen der benachbarten Platten.“ Das stimmt einigermassen mit der Sculptur des Analfortsatzes unseres P. multiplex. Die Betrachtung der Austin’schen Figur bringt aber auch trotz ihrer mangelhaften Ausführung Aufklärung über das, was im Text verschwiegen ist, nämlich über die eckige Form, und beweist außerdem ganz entschieden, dass die Lage der „proboscis“ nicht central sondern marginal gewesen ist, denn obgleich die Fig. 2. d. von der Vorderseite gezeichnet ist, geht aus der Abbildung doch hervor, dass die Röhre auf der rechten Hinterseite angeheftet war, wo sich nach der Stellung des Fossils die Analplatten befinden müssen. Die Form ist also als eine der Ventralröhre des P. multiplex sehr nahestehende anzusehen.

*) Crinoidea p. 80. 81. t. 10. f. 2. d.
Die zweite Art von Poteriocrinus, an welcher die Austin's ebenfalls eine proboscis beobachtet haben, ist P. pentagonus (l. e. p. 86. t. 11. f. 2 e.). Hier heisst es in der Diagnose der Species: „der centrale Mund ist in eine rüsselförmige Röhre verlängert“, und in der Beschreibung ist gesagt: „die Mundröhre scheint aus fünf vertikalen Plattenbändern gebildet zu sein, aber die Stücke sind nicht mit erhabenen Streifen besetzt, wie bei den meisten anderen Poteriocrinen.“ Hierarch ist die Röhre fünfeckig gewesen, und aus der Zeichnung ist nur Querstreifung und scharfe Punkturung zwischen den Plattenreihen zu ersehen; die geringe Krümmung, welche in dem abgebildeten Bruchstück angegeben ist, erlaubt keinen weiteren Schluss. Dass die Stellung der „proboscis“ auch hier nicht central gewesen, ist aus der fig. 2 e. zu ersehen, wo die Verlängerung des Ventraltubus aus den Analplatten ganz deutlich dargestellt ist.

Von einer dritten Species P. rostratus geben die Austin’s die folgende Beschreibung des Analfortsatzes: „die proboscis ist zusammengesetzt aus mehreren senkrechten Plattenreihen, die von der Basis bis zu der Höhe der pinnulae reichen, in ausgewachsenen Exemplaren drei bis 4 Zoll lang sind, und in einige dornartige Spitzen auslaufen (p. 76. t. 9. f. 2. d. und 2. e.). Abgesehen von den dornartigen Spitzen, die man für stehengebliebene Kanten eines abgebrochenen Analfortsatzes halten möchte, zeigt die Figur 2. d. vier Plattenreihen; Fig. 2. e. stellt ein vergrößertes Stück der Außenfläche dar mit zickzack- artig über die Fläche verlaufenden und die stumpfen Kanten der Röhren mit einander verbindenden Erhöhungen, welche in der allgemeinen Form der Sculptur des Analfortsatzes von P. multiplex sehr ähnlich sehen. Ueberhaupt möchte ich nach der Darstellung der Austin’s den Ventraltubus von P. rostratus für die Form halten, welche der Form des P. multiplex am nächsten steht, namentlich wenn man annimmt, dass die Fig. 2. e. etwas schematisirt ist.

Die Austin’s führen noch andere Poteriocrinen an, die mit Ventraltüren versehen sind, so Pot. erasus Mill. t. 8. f. 3. d. und t. 9. f. 1., dessen „proboscis“ bedeutende Dimensionen erreicht, auch aus den Analplatten hervorwächst, aber sonst keine Anhaltspunkte für den Vergleich liefert. Bei der Beschreibung von Pot. daectyloides Aust. (p. 86. t. 11. f. 1. a.) begegnen wir der Bemerkung, dass die proboscis gross und von erhabenen Streifen durchkreuzt ist, die Figur gibt aber über diese Sculptur keinen weiteren Aufschluss.

Bestimmung der Ventraltüre von Poteriocrinus multiplex.

Da die Ventraltüre von Pot. multiplex in einem Blindsack endigt so ist von vorn herein ausgeschlossen, dass sie zur Aufnahme von Nahrungsmitteln oder zur Abführung von Auswurflösungen gedient hat. Aber wenn sie auch nicht geschlossen wäre, würde sie doch weder dem einen noch dem anderen Zwecke gedient haben, denn Fressorgan sind
die pinnulae, welche die Zähne der höheren Thiere vertreten, und die mit ihren messerscharfen Schneiden sehr geeignet waren, selbst grössere Thiere zu zerkleinern und den Speisebrei ihrem Nahrungskanal zuzuführen. Die unverdauten Reste der Nahrung wurden durch die Ausweitung zwischen zwei Armen, welche durch die Einsetzung der unsymmetrischen Analplatten hervorgebracht ist, nach aussen geschwemmt. Selbst bei den mit einer Ventralröhre versehenen Individuen wird diese Ausgangspforte nicht versperrt, da die aus den Analplatten hervorgewachsene Röhre theils nach innen, theils nach der Seite gebogen ist, um dem Auswerfen der Excremente freien Raum zu lass

Wenn nun die Ventralröhre weder zur Aufnahme der Nahrung noch zur Secretion der Auswurflöffel gedient hat, so fragt sich, welchem Zwecke sie denn gedient habe und welche Function namentlich die Reihen zahlreicher Oeffnungen in der Röhre übernommen haben. Wenn diese Oeffnungen die Rolle der sogenannten Hydrospiren gespielt hätten, müssten sie bei allen Individuen vorhanden sein, aber die Ventralröhre findet sich nur selten bei einzelnen Individuen, die Mehrzahl ist nicht mit diesem Organ begabt; es wird demnach zur höchsten Wahrscheinlichkeit, dass die Ventralröhre von P. multiplex Generationsorgan und dass möglicher Weise die Locherreihen Ovarialöffnungen gewesen. Fortpflanzungsgorgane müssen doch jedenfalls vorhanden gewesen sein, und da der ganze Körper der Crinoideen, namentlich der paläozoischen, aus soliden Kalkplatten zusammengesetzt war, so hat es nichts Wunderbares, dass auch die Generationsorgane von einer kalkigen Hülle bedeckt waren. Die Porenreihen auf dem Analfortsatz von Pot. curtus und pentagonus haben gewiss dieselbe Bestimmung gehabt, wie die von P. multiplex. Bei den jetzt lebenden Crinoideen vermuthet man den Sitz der Fortpflanzungsgorgane in den Anschwellungen der Basis der Armgliedsubstantz, was übrigens kein Argument gegen die verschiedene Organisation bei den paläozoischen Crinoideen ist.

Welche Rolle die conoidei d. h. die mittelständigen kegelförmigen Ventralröhren gespielt haben, muss dahin gestellt bleiben, vorläufig gibt es noch keinen Anhalt für irgend eine plausible Hypothese. Ebenso räthselhaft sind die geschlossenen fistulosi, während die offenen verschiedene Bestimmungen in sich vereinigt haben können, die einer Afterröhre und die der Aussendung von Generationssubstanz. Die squamosi schliessen auch jede Vermuthung über die Functionen des in Rede stehenden Organs aus, man müsste dem annehmen wollen, dass eine Ausschwitzung zwischen den schuppenartigen Platten stattgefunden habe. Erst bei den gyrosi d. h. bei den gekrümmten Ventralröhren der Sicyocrinus und Botryocrinus zeigen sich Merkmale, die auf Bewegungen von Flüssigkeiten von innen nach aussen deuten durch schlitzartige Oeffnungen, die von Angeln deutlich wiedergegeben aber nicht näher beschrieben sind. Nach einer güttigen Mittheilung des Prof. Lovén, die mir erst während des Reindrucks dieser Schrift zugegangen, ist auch bei Sicyocrinus cucurbitaceus eine scharfe Kante auf der Ventralröhre vorhanden, aber die meist elliptischen Oeffnungen befinden sich nicht auf—sondern zu beiden Seiten derselben.

Nouv. Mémoires. Tome XIV. 20

Einen ähnlichen Ventralstubus zeigt Cromyocrinus gracilis Wetherby *) aus dem untere Bergkalk von Kentucky, auch aus sechseckigen Platten bestehend und vielleicht denselben Zwecken dienend.

Man sieht daraus, dass diese Thiere sich zu helfen wussten, und dass man sich daher nicht wundern darf, wenn Organe der verschiedenen Species oder Genera, die einem und demselben Zwecke dienten, eine verschiedene Form erhalten haben.

Am. 8 Februar 1882.

*) Descriptions of new Crinoids from the Cincinnati group of the lower Silurian and the subcarboniferous of Kentucky.
ERKLÄRUNG DER TAFEL.

Fig. 1. Vorderseite von Poteriocrinus multiplex mit dem tubus ventralis. Zwischen der Ventralröhre und dem rechten Arm körnige Masse, vielleicht ein Haufen Eier. Natürliche Größe.

1 a. Ein Stück des Ventraltubus vergrößert.

5. Cromyocrinus simplex mit einem Auswuchs der Analplatten und dem Muskeleindruck eines abgefallenen Capulus parasiticus.

7. Cromyocrinus simplex mit pyramidalem Fortsatz der Analplatten.
Schriften, welche bei Abfassung dieser Abhandlung benutzt wurden.

N. P. Angelin. Iconographia Crinoideorum. 1878.
T. Austin and T. Austin jun. A monograph of recent and fossil Crinoidea. 1844.
J. Bysby. Thesaurus devonico-carboniferus. 1878.
George Cumberland. Reliquiae conservatae — of some remarkable fossil Encrinites 1826.
James Hall. Geological survey of Iowa. 1858.
James Hall. Description of new species of Crinoidea from the carboniferous rocks of the Mississippi valley. 1861.
S. A. Miller. American palæozoic fossils. 1877.
G. Wachsmuth and Frank Springer. Revision of the Palaeocrinoida. 1879. 1881.
A. Zittel. Handbuch der Palaeontologie. 1879.
LE MOUVEMENT SUR LA SURFACE DE LA TERRE

SOUS L'ACTION

DE LA SEULE FORCE D'ATTRACTION TERRESTRE.

par

Nicolas Svorykine.

Nouv. Mémoires. Tome XIV.
Le mouvement sur la surface de la terre sous l'action de la seule force d'attraction terrestre.

par

NICOLAS SVORYKINE.

La forme de la terre, sa rotation autour de l'axe et son attraction de chaque point matériel sont des conditions indispensables pour tout mouvement sur la surface de la terre. Par conséquent, le mouvement d'un point matériel qui sur sa route ne rencontre ni frottement ni résistance et qui est soumis à l'action de la seule force attractive de la terre, présenterait le cas le plus simple de mouvement sur la surface de la terre; l'influence du mouvement de translation de la terre peut être laissée de côté à cause de sa nullité relative.

L'étude d'un tel mouvement d'un mobile présente une introduction naturelle pour une recherche exacte sur les autres mouvements plus compliqués, qu'on rencontre sur la surface de la terre et dans l'atmosphère; et cependant ce simple mouvement a été peu étudié jusqu'à présent.

Comme on le sait, c'est Hadley *) qui indiqua le premier quelle influence la rotation de la terre autour de son axe a sur un mouvement à sa surface, à savoir sur la direction des vents alizés. Il considérait (de même qu'après lui on le faisait à peu près jusqu'à nos jours) la direction du vent comme conséquence d'une impulsion initiale et de l'influence permanente de la rotation de la terre. Un tel mouvement a lieu d'après lui ainsi: le point mobile dèvie suivant le parallèle vers E ou W, savoir dans l'hémisphère boréal toujours à droite, dans l'hémisphère austral à gauche; la valeur de la déviation est égale à la différence des vitesses linéaires des points situés sur le parallèle

du commencement du mouvement et de ceux situés sur le parallèle de la fin du mouvement, après avoir multiplié cette différence par la durée du déplacement d’un parallèle à l’autre. Ainsi la plus grande déviation pour la même vitesse de mouvement sera en cas du mouvement initial dirigé suivant le méridien; elle est nulle pour le mouvement suivant le parallèle.

Les savants allemands MM. Bäyer et Ohlert *) ont donné une expression analytique du mouvement selon Hadley, et M. Ohlert a déduit aussi l’équation de la courbe décrite par le mobile dans ce mouvement.

En 1839 MM. Babinet, Combes et Delaunay **), de l’Académie des Sciences, ont démontré l’insuffisance des vues de Hadley sur le mouvement à la surface de la terre et ils sont arrivés par des méthodes tout à fait différentes à la conséquence que nous pouvons formuler ainsi: chaque mouvement relatif sur la surface de la terre se passe comme si la terre était immobile, la force attractive terrestre—perpendiculaire à la surface de la terre, et le point mobile constamment sollicité par une force perpendiculaire à la direction du mouvement et dirigée dans le plan tangent à la surface de la terre, à droite dans l’hémisphère nord et à gauche dans l’hémisphère sud; cette force est égale à $2m \omega \cos \varphi \sin \varphi$, où φ désigne la latitude du point à un instant donné, ω — la vitesse du mouvement relatif sur la terre, ν — la vitesse angulaire de la rotation de la terre autour de son axe, m — la masse du mobile.

Par conséquent, si nous faisons mouvoir un point suivant une courbe géodésique jouant sur la terre le rôle de la droite, il exercera dans le plan tangent à la surface de la terre la pression égale à $2m \omega \cos \varphi$, dirigée à droite dans l’hémisphère boréal et à gauche dans l’austral. Pendant le mouvement sur une autre courbe quelconque, la pression dans le plan tangent à la terre se compose de deux pressions: l’une dépend de la forme de la courbe et est égale à $\frac{nv^2}{\cos \varphi}$, l’autre qui provient de ce que le mouvement a lieu sur la terre qui tourne, est la même que pour le mouvement sur la courbe géodésique; v est le rayon de courbure de la projection de la trajectoire du mobile sur le plan tangent à la surface de la terre en un point donné de la trajectoire; il est égal à $\frac{\varphi^2}{\cos \varphi}$, ν étant le rayon de courbure de cette trajectoire, et φ l’angle de la normale.

***) Mohr et Guiberg, dans leurs études sur les mouvements de l’atmosphère (1 partie p. 19), nomment $2m \omega \cos \varphi$, la force centrifuge composée; mais ce n’est pas exact parce que $2m \omega \cos \varphi$ n’est que la composante de la force centrifuge composée prise dans le plan horizontal. La composante de cette force suivant la normale à la surface de la terre, peut être positive ou négative selon la direction de mouvement; et c’est pourquoi, comme on le verra plus loin, la pression du mobile sur la surface de la terre est différente selon la direction du mouvement.
principale de la trajectoire avec le plan tangent à la terre; pour la courbe géodésique
on a $\gamma = 90^\circ$.

On peut aussi en conclure que le mobile qui a une vitesse relative initiale et qui
peut se mouvoir sur la surface de la terre sans résistance suivant une direction quelcon-
que, dérive pour un court intervalle de temps t de la direction initiale de mouvement, c.
à d. de la courbe géodésique suivant laquelle se faisait la vitesse initiale, dans l'hé-
misphère septentrional à droite, dans le méridional à gauche, et la valeur de déviation
est égale à $\omega t \sin \gamma$ *) en supposant que γ reste à peu près invariable pendant le
temps t; ainsi la valeur de déviation ne dépend aucunement de la direction initiale de
mouvement.

Une déviation analogue dans le cas d'une projectile était indiquée depuis longtemps
par Poisson **), dont la formule donne pour la déviation les mêmes valeurs que
l'expression précédente.

M. Finger ***) nous donne, dans son étude sur le mouvement sur la terre, non seuf-
lement valeur de la pression dans le plan tangent à la terre pendant le mouvement
suivant une courbe quelconque, mais aussi la pression suivant la normale à la surface
de la terre. De ses équations il a voulu déduire aussi les équations différentielles du mou-
vement sous l'action de la seule force attractive de la terre, mais par erreur il a pris pour
cela les équations (11) de son article ****) au lieu des équations (18) †) dont il fait usage
pour déterminer la pression et dont on doit se servir aussi pour le but indiqué. C'est
pourquoi les équations (27) ‡‡) obtenues par lui correspondent, non pas au mouvement
qu'il avait voulu déterminer, mais au mouvement qui pourrait arriver sur la terre, si la force
attractive de la terre, était perpendiculaire à la surface de la terre. Mais les équations
(18) lui auraient donné, dans ce cas, précisément ce que nous trouvons, par exemple, dans
l'article de M. Sprung †††‡‡), savoir, que v la vitesse du mouvement relatif est constante
et que le rayon de courbure γ de la projection de la courbe décrite sur le plan tangent à
la terre est égale à $\frac{v}{2 \omega \sin \gamma}$. Mais c'est aussi ce qui résulte comme une conséquence né-
cessaire de la définition précédente qui caractérise le mouvement sur la surface de la
terre: si la force déviatoire $2 m \omega v \sin \gamma$ est perpendiculaire à la direction du mouvement,
la vitesse doit évidemment être constante; d'un autre côté, le point qui est en état de se

*) Martin de Brettes: Compt. rend. t. 63, 1866 septembre.

Bd. 76. II Abtheil. p. 67.

****) Ibid. p. 79.

†) Ibid. p. 88.

‡‡) Ibid. p. 98.

mouvoir librement sur la surface de la terre, ne peut exercer aucune pression dans le plan tangent et, par conséquent, la pression qui dépend de la forme de la courbe doit dans ce cas être égale et contraire à la pression due à ce que le mouvement a lieu sur la surface de la terre, c. à d. \[\frac{mv^2}{\varepsilon} = 2\omega v \sin \varepsilon \] et la convexité de la courbe est dirigée à gauche dans notre hémisphère et à droite dans l'hémisphère sud.

Pour la pression suivant la normale à la surface de la terre M. Finger donne *) l'expression suivante:

\[p = g + 2\mu v \frac{ds}{dl} \cos^2 \phi \sin \theta = \frac{m}{a} \left(1 - \frac{e^2 \cos^2 \phi \cos^2 \theta}{1 - e^2} \right) \sqrt{1 - e^2 \sin^2 \theta}, \]

où \(p \) est la pression du mobile; \(g \) — son poids, c. à d. la pression en repos relatif; \(\phi \) — sa latitude; \(e \) — l'excentricité des méridiens de la terre; \(\theta \) — l'angle que forme la direction du mouvement avec le méridien, en le comptant du point du sud; \(\frac{ds}{dl} \) — la même chose que \(v \) et \(w \) — la même chose que \(\omega \) des formules précédentes. Cependant on peut présenter cette équation sous une forme un peu plus simple, en considérant que \(\frac{1}{a} \left(1 - \frac{e^2 \cos^2 \phi \cos^2 \theta}{1 - e^2} \right) \sqrt{1 - e^2 \sin^2 \theta} = \frac{1}{R} \),

\(R \) étant le rayon de courbure de la section normale à la surface de la terre, menée suivant la direction du mouvement; on aura:

\[p = g + 2\mu v \cos^2 \phi \sin \theta - \frac{\omega^2}{R}. \]

Il résulte de ce qui précède que la pression du mobile peut être ou plus ou moins grande que son poids, suivant la direction du mouvement; du reste, si la vitesse \(v \) surpassé la valeur \(\frac{2\omega v \cos \phi}{\sqrt{1 - e^2 \sin^2 \phi}} \), la pression est toujours plus petite que le poids, mais elle en diffère par des valeurs différentes suivant la direction du mouvement; \(a \) est le rayon de l'équateur.

Une propriété analogue par rapport au mouvement des projectiles avait été indiquée depuis longtemps par Poisson **): il a trouvé que la portée des projectiles jetés vers l'est est plus grande que celle des projectiles jetés vers l'ouest, toutes les autres conditions étant les mêmes.

Par rapport à la forme de la courbe suivant laquelle le point se meut sous l'action de la seule force attractive de la terre, on peut déduire de ce qui précède une seule

*) Ibid. p. 100.
**) Voir plus haut.
conséquence: la vitesse relative du mouvement sur la terre étant très petite et \(\varphi \) étant un peu considérable, \(\varphi \) peut être regardé comme quantité constante, c. à d. dans ce cas limite la trajectoire du mobile et diffère très peu du cercle. Nous n'avons pas encore d'autres données plus générales sur ce sujet \(^{1}\).

Le but du présent article est de compléter en partie cette lacune.

\(\S \) 1.

Supposons les axes fixes de coordonnées choisis de manière que celui des \(z \) coïncide avec l'axe de la terre et qu'il ait le pôle nord sur sa partie positive, que l'origine des coordonnées soit au centre de la terre, que les deux autres axes soient dans le plan de l'équateur et que l'axe des \(y \) rencontre la surface de la terre à 90° ouest de celui des \(x \). Par conséquent dans l'angle normal la rotation de la terre sera dirigée de l'axe des \(y \) vers celui des \(x \). Alors l'équation de la surface de la terre sera pour chaque moment du mouvement:

\[
\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} - 1 = 0,
\]

\(a \) étant le rayon de l'équateur, \(b \) — le demi-axe de la terre.

Les équations différentielles du mouvement absolu sur une surface dont l'équation est \(f = 0 \) sont, comme on le sait:

\[
m \frac{d^2 x}{dt^2} = X + \lambda \frac{df}{d\varphi} ; \quad m \frac{d^2 y}{dt^2} = Y + \lambda \frac{df}{d\varphi} ; \quad m \frac{d^2 z}{dt^2} = Z + \lambda \frac{df}{d\varphi} ;
\]

où \(X, Y, Z \) sont les projections des forces actives sur les axes de coordonnées:

\[
\lambda = \frac{N}{\sqrt{\left(\frac{df}{d\varphi}\right)^2 + \left(\frac{df}{d\varphi}\right)^2 + \left(\frac{df}{d\varphi}\right)^2}}
\]

\(N \) étant la réaction de la surface, égale et contraire à la pression du mobile sur la surface.

\(^{1}\) Après avoir fini cette étude qui a été communiquée dans la séance de 2\(^{o}\) octobre 1881 de la section de physique de la Société des Amis des Sciences Naturelles etc. de Moscou, j'ai eu l'occasion de connaître l'article de M. Sprung (Ann. der Phys. u. Chem. v. Wiedemann, 1881, X, 9.) qui, en montrant quelques propriétés importantes du mouvement dont il s'agit, donne aussi les équations de ce mouvement; mais il ne fait aucune recherche sur ses équations, si bien que l'on ne peut obtenir de cet article aucune idée déterminée sur la trajectoire du mobile en cas général; c'est pourquoi notre conclusion ci-dessus vaut à présent à peu près autant qu'avant la publication de l'article cité.
Le mouvement du mobile par rapport à l'axe de la terre sera le mouvement absolu, parce que nous laissons de côté le mouvement de la terre dans l'espace. Dans notre cas la force active se réduit à la force d'attraction de la terre, que l'on peut regarder comme résultante de deux forces dont l'une est égale à la gravité \(mg \), l'autre est égale et contraire à la force centrifuge due à la rotation de la terre. La première composante étant normale à la surface de la terre, on peut la joindre au second terme du second membre, c. à d. à \(N \) ou à \(\lambda \). La masse du mobile \(m \) soit\(=1 \). Alors les équations ci-dessus deviendront:

\[
\frac{d^2x}{dt^2} = -\omega^2 x + \frac{2x}{a^2} ; \quad \frac{d^2y}{dt^2} = -\omega^2 y + \frac{2y}{a^2} ; \quad \frac{d^2z}{dt^2} = \lambda, \quad \frac{2z}{b^2} ;
\]

(1)

où \(\omega \) est la vitesse angulaire de la rotation de la terre.

Ces équations nous en donnent les trois autres:

\[
a^2\frac{d^2y}{dt^2} - b^2\frac{d^2z}{dt^2} = -a^2\omega y z ; \quad b^2\frac{dx}{dt^2} - b^2\frac{d^2z}{dt^2} = a^2\omega x z ; \quad y \frac{dx}{dt} - x \frac{dy}{dt} = 0.
\]

(II)

La dernière exprime le principe connu des aires par rapport à la projection du mobile sur le plan de l'équateur et pourra être remplacée par son intégrale:

\[
y \frac{dx}{dt} - x \frac{dy}{dt} = C,
\]

\(C \) étant une constante arbitraire.

Introduisons les autres coordonnées \(\varphi \) et \(L \) au lieu des \(x, y, z, \varphi \) est la latitude du mobile (l'angle formé par la normale à la surface de la terre avec le plan de l'équateur), en la prenant positive pour l'hémisphère septentrional et négative pour l'hémisphère méridional. \(L \) désigne la longitude (l'angle formé par le plan, mené par le mobile et l'axe de la terre avec le plan mené par les axes des \(y \) et \(z \)), en la comptant positive dans le sens de la rotation de la terre, c. à d. de l'axe des \(y \) vers l'axe des \(x \).

Alors posant \(\frac{a^2 - b^2}{a^2} = e^2 \), on a:

\[
x = \frac{a\ cs\varphi \ snL}{\sqrt{1 - e^2 sn^2 \varphi}} ; \quad y = \frac{a\ cs\varphi \ csL}{\sqrt{1 - e^2 sn^2 \varphi}} ; \quad z = \frac{a(1 - e^2)sn\varphi}{\sqrt{1 - e^2 sn^2 \varphi}}
\]

Les dérivées des coordonnées par rapport au temps seront:

\[
\frac{dx}{dt} = \frac{a}{(1 - e^2 sn^2 \varphi)} \left\{ cs\varphi \ csL (1 - e^2 sn^2 \varphi) \frac{dL}{dt} - sn\varphi \ snL (1 - e^2) \frac{d\varphi}{dt} \right\}
\]
\[
\begin{align*}
\frac{dy}{dt} &= - \frac{a}{(1 - e^s \sin^2 \chi)^3} \left\{ \text{cs} \varphi \sn L(1 - e^s \sin^2 \chi) \frac{dL}{dt} + \sn \varphi \cs L(1 - e^s) \frac{d\varphi}{dt} \right\}, \\
\frac{dz}{dt} &= \frac{a(1 - e^s)\cs \varphi}{(1 - e^s \sin^2 \chi)^3} \frac{d\varphi}{dt}; \\
\frac{d^2 x}{dt^2} &= \frac{a}{(1 - e^s \sin^2 \chi)^3} \left\{ \text{cs} \varphi \cs L(1 - e^s \sin^2 \chi) \frac{d^3 L}{dt^3} - \sn \varphi \sn L(1 - e^s) \frac{d^2 \varphi}{dt^2} \right\} \\
&- \text{cs} \varphi \sn L(1 - e^s \sin^2 \chi) \left(\frac{dL}{dt} \right)^2 - 2\sn \varphi \cs L(1 - e^s) \frac{dL}{dt} \frac{d\varphi}{dt} \\
&- \frac{\text{cs} \varphi \sn L(1 - e^s)(1 + 2e^s \sin^2 \chi)}{1 - e^s \sin^2 \chi} \left(\frac{d\varphi}{dt} \right)^2, \\
\frac{d^2 y}{dt^2} &= - \frac{a}{(1 - e^s \sin^2 \chi)^3} \left\{ \text{cs} \varphi \sn L(1 - e^s \sin^2 \chi) \frac{d^3 L}{dt^3} + \sn \varphi \cs L(1 - e^s) \frac{d^2 \varphi}{dt^2} \right\} \\
&+ \text{cs} \varphi \cs L(1 - e^s \sin^2 \chi) \left(\frac{dL}{dt} \right)^2 - 2\sn \varphi \sn L(1 - e^s) \frac{dL}{dt} \frac{d\varphi}{dt} \\
&+ \frac{\text{cs} \varphi \cs L(1 - e^s)(1 + 2e^s \sin^2 \chi)}{1 - e^s \sin^2 \chi} \left(\frac{d\varphi}{dt} \right)^2, \\
\frac{d^2 z}{dt^2} &= \frac{a(1 - e^s)}{(1 - e^s \sin^2 \chi)^3} \left\{ \text{cs} \varphi \frac{d^2 \varphi}{dt^2} - \sn \varphi(1 - e^s - 2e^s \cs \varphi) \frac{d\varphi}{dt} \left(\frac{d\varphi}{dt} \right)^2 \right\}.
\end{align*}
\]

En introduisant les expressions obtenues des dérivées des coordonnées par rapport au temps dans les équations (II), celles-ci deviendront:

\[
\begin{align*}
\frac{1}{1 - e^s \sin^2 \chi} \left\{ \sn \varphi \cs \varphi \sn L(1 - e^s \sin^2 \chi) \frac{d^3 L}{dt^3} + \cs L(1 - e^s) \frac{d^2 \varphi}{dt^2} \right\} \\
+ \sn \varphi \cs \varphi \cs L(1 - e^s \sin^2 \chi) \left(\frac{dL}{dt} \right)^2 - 2\sn \varphi \sn L(1 - e^s) \frac{dL}{dt} \frac{d\varphi}{dt} \\
+ 3e^s \sn \varphi \cs \varphi \cs L \frac{1 - e^s}{1 - e^s \sin^2 \chi} \left(\frac{d\varphi}{dt} \right)^2 = - \omega^s \sn \varphi \cs \varphi \cs L;
\end{align*}
\]

Nouv. Mémoires. Tome XIV.
\[
\frac{1}{1 - e^{2s^2}} \left(sn^2 \varphi \ cs \varphi \ csL(1 - e^{2s^2}) \frac{d^2L}{dt^2} + sn^2 \varphi \ snL \left(\frac{dL}{dt} \right)^2 - 2sn^2 \varphi \ csL(1 - e^{2s^2}) \frac{dL}{dt} \right.
- 3e^{2s^2} \ cs^2 \ snL \left(\frac{dL}{dt} \right)^2 = \omega^2sn^2 \ cs \varphi \ snL; \]

\[
\frac{a^2 \ cs^2 \ varphi}{1 - e^{2s^2}} \frac{dL}{dt} = C.
\]

En multipliant la première de ces équations par \(csL \) et la seconde par \(snL \), et puis en soustrayant l'une de l'autre, nous aurons

\[
(1 - e^{2s^2}) \frac{d^2\varphi}{dt^2} + 3e^{2s^2} \ cs^2 \ sn^2 \ varphi \ cs^2 \ (1 - e^{2s^2}) \left(\frac{d\varphi}{dt} \right)^2 = \omega^2sn^2 \ cs^2 \ varphi \ sn^2 \ varphi = 0.
\]

Remplaçons ici \(\frac{dL}{dt} \) par sa valeur obtenue de la troisième des équations ci-dessus et divisons le tout par \((1 - e^{2s^2})^2 \):

\[
\frac{1 - e^{2s^2}}{(1 - e^{2s^2})^2} \frac{d^2\varphi}{dt^2} + 3e^{2s^2} \ cs^2 \ sn^2 \ varphi \ cs^2 \ (1 - e^{2s^2}) \left(\frac{d\varphi}{dt} \right)^2 = \omega^2sn^2 \ cs^2 \ varphi \ sn^2 \ varphi = 0.
\]

Remplaçons \(\frac{C}{a^2} \) par \(A \) et représentons l'équation obtenue de manière suivante:

\[
(1 - e^{2s^2}) \frac{1}{(1 - e^{2s^2})^2} \frac{d}{dt} \left(\frac{1}{(1 - e^{2s^2})^2} \frac{d\varphi}{dt} \right) = \omega^2sn^2 \ cs^2 \ varphi \ sn^2 \ varphi = 0.
\]

En multipliant tous les termes de l'équation par \(2 \frac{d\varphi}{dt} \) et les intégrant, on a:

\[
(1 - e^{2s^2}) \left(\frac{d\varphi}{dt} \right)^2 A^2 = \omega^2sn^2 \ cs^2 \ varphi \ sn^2 \ varphi = B,
\]

\(B \) étant une constante arbitraire.

Nous avons donc, au lieu des équations (II), les deux suivantes:

\[
\frac{d\varphi}{dt} = \pm \frac{1 - e^{2s^2} \ varphi}{\sqrt{1 - e^{2s^2}}} \sqrt{\omega^2sn^2 \ varphi - A^2 \ cs^2 \ (1 - e^{2s^2})} \rightarrow B(1 - e^{2s^2} \ varphi) \]

\[
\left\{ \begin{array}{c}
\frac{d\varphi}{dt} = \pm \frac{1 - e^{2s^2} \ varphi}{\sqrt{1 - e^{2s^2}}} \sqrt{\omega^2sn^2 \ varphi - A^2 \ cs^2 \ (1 - e^{2s^2})}.
\end{array} \right\}
\]
Comparant les équations obtenues aux équations du mouvement du pendule conique *), il est facile d'en remarquer la ressemblance. Nos équations en diffèrent d'abord en ce qu'elles contiennent l'excentricité des méridiens e (parce que dans notre cas le mouvement a lieu sur la surface de l'ellipsoïde de rotation), et le degré du premier terme sous le radical n'est pas le même. Le rôle de l'axe de la terre correspond à celui de la verticale. Dans le cas du pendule la force motrice est égale à \(g e \sin^2 \varphi \), où \(\varphi \) est l'angle que le pendule forme avec le plan horizontal; dans notre cas la force motrice est la projection de la force d'attraction de la terre sur le plan tangent, laquelle est égale à
\[
\frac{\alpha \omega^2 \sin^2 \varphi \cos^2 \varphi}{\sqrt{1 - e^2 \sin^2 \varphi}}
\]
située dans le plan méridien. Les deux mouvements seront évidemment analogues lorsque \(sn \) diffère peu de l'unité et que son degré n'a que peu d'importance.

Par rapport aux équations (III) remarquons que, lorsque \(A \) et \(B \) dans deux cas différents du mouvement ont la même valeur absolue, mais que \(A \) est positive dans l'un cas et négative dans l'autre, elles nous donnent la même valeur pour \(\frac{d\varphi}{dt} \) dans les deux cas, et deux valeurs égales et contraires pour \(\frac{dL}{dt} \). Par conséquent, ces deux mouvements ne diffèrent qu'en ce que le plan méridien mené par le mobile tourne autour de l'axe de la terre suivant l'une ou l'autre direction.

Pour obtenir les équations du mouvement relatif introduisons la variable \(t \) qui a la même signification dans le mouvement relatif que \(L \) dans le mouvement absolu, c. à d. c'est la longitude géographique du mobile; alors on a \(L = t - \omega t \) et \(\frac{dL}{dt} = \frac{dt}{dt} + \omega \). La latitude \(\varphi \) est identique dans l'un et l'autre mouvement. Ainsi pour le mouvement relatif on aura:

\[
\frac{dl}{dt} = A \frac{1 - e^2 \sin^2 \varphi}{\cos^2 \varphi} - \omega t \tag{IV}
\]

\[
\frac{d\varphi}{dt} = \pm \frac{1 - e^2 \sin^2 \varphi}{\sqrt{1 - e^2 \sin^2 \varphi}} \sqrt{\omega^2 \sin^2 \varphi - \frac{A^2}{\cos^2 \varphi} (1 - e^2 \sin^2 \varphi)} + B(1 - e^2 \sin^2 \varphi) \tag{V}
\]

Après avoir éliminé \(t \) de ces équations, on trouve:

\[
dl = \pm \left\{ \frac{A (1 - e^2 \sin^2 \varphi)}{\cos^2 \varphi} - \omega \right\} \sqrt{1 - e^2 \sin^2 \varphi} \frac{\sqrt{1 - e^2 \sin^2 \varphi} \sqrt{\omega^2 \sin^2 \varphi - \frac{A^2}{\cos^2 \varphi} (1 - e^2 \sin^2 \varphi)} + B(1 - e^2 \sin^2 \varphi)} \tag{VI}
\]

l'équation différentielle de la courbe décrite par le mobile sur la surface de la terre dans le mouvement relatif.

*) Durège, Théorie der elliptischen Functionen, 1868, p. 303, les équations (5) et (7).
Si l'on multiplie l'équation (IV) par le rayon du parallèle \(\frac{a \cos \varphi}{\sqrt{1 - e' \sin^2 \varphi}} \) et l'équation (V) par le rayon de courbure du méridien en un point situé sur le parallèle \(\varphi \),
\[
\frac{a(1 - e^2)}{(1 - e' \sin^2 \varphi)^2},
\]
et qu'ayant élevé au carré l'une et l'autre, on fait l'addition, on aura le carré de la vitesse linéaire du mouvement relatif:

\[
v^2 = a^2 \left(\frac{1 - e^2}{1 - e' \sin^2 \varphi} \right)^2 \left(\frac{dz}{dt} \right)^2 + \frac{a^2 \cos^2 \varphi}{1 - e^2 \sin^2 \varphi} \left(\frac{dl}{dt} \right)^2 = a^2 \left\{ \omega^2 + A \dot{\alpha}^2 - 2 A \omega + B(1 - e^2) \right\}
\]

(VII)

Il résulte de là que \(v \) est constante.

Si, après avoir trouvé les composantes de la vitesse linéaire suivant le méridien et le parallèle, on prend le rapport de la dernière composante à la première, on obtient tang de l'angle que forme la tangente à la trajectoire du mobile dans le mouvement relatif avec le méridien. La tangente trigonométrique obtenue peut avoir pour la même latitude \(\varphi \) des signes différents parce que \(\frac{dl}{dt} \) a toujours la même valeur et le même signe pour la même valeur de \(\varphi \), mais \(\frac{dz}{dt} \) peut avoir des signes différents; ainsi les tangentes à la courbe en un point situé sur quelque parallèle \(\varphi \), forment avec le méridien ou les angles égaux, ou les angles qui se complètent l'un l'autre jusqu'à \(\pi \).

Quant à la position de la normale principale à la trajectoire du mobile (c. à d. à son angle avec le plan tangent à la terre), et à la valeur du rayon de courbure de la trajectoire \(r \), on peut les déterminer facilement, en ayant égard aux relations entre \(r \) et \(\varphi \), \(r \) et \(R \), à savoir: \(r = \varphi \cos \varphi \), \(r = R \sin \varphi \), \(\varphi \) étant le rayon de courbure de la projection de la courbe sur le plan tangent à la terre, \(R \) étant le rayon de courbure de la section normale menée par la tangente à la trajectoire. Les valeurs de \(\varphi \) et de \(R \) ont été données dans notre introduction.

Avant de commencer l'analyse des équations (IV), (V) et (VI), trouvons l'expression de la pression du mobile sur la surface de la terre. Pour cela faisons usage de la troisième des équations (I):

\[
\frac{d^2 z}{dt^2} = \kappa \frac{df}{dx} = (N - g) \frac{df}{dz} = \frac{df}{dz} \frac{dz}{dx} = \left(N - g \right) \sin \varphi
\]

En remplaçant ici \(\frac{d^2 z}{dt^2} \) par son expression en fonction de \(\varphi \) et \(l \), on a
\[
\frac{a(1-e^2)}{(1-e^2sn^2\varphi)^2} \left\{ \frac{d^2\varphi}{dt^2} + \frac{sn\varphi(1-e^2-2e^2cs^2\varphi)}{1-e^2sn^2\varphi} \left(\frac{d\varphi}{dt} \right)^2 \right\} = (N-g)sn\varphi;
\]
d'où
\[
N = g + \frac{a}{\sqrt{1-e^2sn^2\varphi}} \left\{ \omega^2cs^2\varphi - \omega^2e^2sn^2\varphi - B(1-e^2sn^2\varphi) \right\}
\]
(\text{VIII})

Il en résulte que la pression du mobile n'est pas égale au poids et qu'en général elle est variable.

\[
\frac{d\varphi}{dt}
\]
est exprimé, comme on le voit de l'équation (V), par un radical dont la valeur, pour \(\varphi \) variant de zéro à \(\frac{\pi}{2} \), peut être réelle ou imaginaire; c'est pourquoi la latitude \(\varphi \) du mobile peut varier seulement entre les limites déterminées, entre lesquelles \(\frac{d\varphi}{dt} \) conserve une valeur réelle, à d. le polynôme sous le radical a une valeur positive. Il résulte de là que \(\varphi \) oscille périodiquement entre lesdites limites, tantôt en croissant, tantôt en décroissant, comme le montrent les deux signes du radical. Égalant au zéro le polynôme sous le radical:

\[
\omega^2sn^2\varphi = \frac{A^2}{cs^2\varphi} (1-e^2sn^2\varphi) + B(1-e^2sn^2\varphi) = 0,
\]
(\text{IX})
on en aura les valeurs limites de \(\varphi \), correspondant à \(\frac{d\varphi}{dt} = 0 \); ce sont les racines de cette équation qui seront les valeurs limites cherchées.

Cette équation résolue par rapport à \(sn\varphi \) donne:

\[
sn\varphi = \pm \sqrt{\frac{\omega^2+A^2e^2-B(1+e^2)+\sqrt{(\omega^2+A^2e^2-B(1+e^2))}}{2(\omega^2-Be^2)}}
\]
(\text{X})

Ainsi pour \(\varphi \) nous avons quatre valeurs dont les deux ne diffèrent des deux autres que par le signe. Il est possible maintenant: 1° que toutes les quatre racines de l'équation (IX) seront réelles et finies; 2° que deux racines seront réelles et finies et les deux autres nulles; 3° que deux racines seront réelles et les deux autres imaginaires.

Il est facile de reconnaître les conditions de ces trois cas d'après la formule elle-même (X) et l'équation (V) représentée sous cette forme:

\[
\frac{d\varphi}{dt} = \pm \frac{1-e^2sn^2\varphi}{\sqrt{1-e^2}} \sqrt{\omega^2sn^2\varphi - A^2\tan^2\varphi(1-e^2sn^2\varphi) + (B-A^2)(1-e^2sn^2\varphi)}
\]
(\text{VI})

Soit \(\omega^2-Be^2 \) une valeur positive. Toutes les quatre racines seront réelles pour \(B-A^2 < 0 \), parce qu'alors on aura \(B < \omega^2 \) et, par conséquent, la somme des termes qui
sont sous le radical extérieur est positive et plus grande que le radical intérieur qui est moindre que $\omega^2 - Be^2 - (A^2e^2 - B)$; de cette dernière remarque il résulte que le numérateur sous le radical est moindre que $2(\omega^2 - Be^2)$, c. à d. $sn\varphi$ est moindre que l’unité et l’arc φ, par conséquent, est réel.

Deux racines sont nulles et les deux autres réelles, finies et <1, lorsque $B - A^2 = 0$.

Deux racines seront réelles et moindres que l’unité et les deux autres imaginaires, pour $B - A^2 > 0$, parce que le radical intérieur est alors plus grand que la somme des termes qui sont sous le seul radical extérieur et, par conséquent, on a une valeur négative sous le radical extérieur ou une valeur imaginaire pour $sn\varphi$, si l’on prend le radical intérieur avec le signe négatif, et une valeur >0 et <1 si l’on prend le radical intérieur avec le signe positif.

Soit $\omega^2 - Be^2$ une valeur négative, $B - A^2$ peut alors être uniquement positive ce que fait voir l’équation (V); dans ce cas le radical intérieur est moindre que la somme des termes qui sont sous le seul radical extérieur; cette somme est négative, de même que le dénominateur. Nous avons donc pour $sn\varphi$ toujours une valeur réelle; mais celle-ci est plus grande que l’unité et, par conséquent, φ est une valeur imaginaire, si l’on prend le radical intérieur avec le signe négatif, parce que dans ce cas le radical intérieur est plus grand que $\omega^2 - Be^2 - (A^2e^2 - B)$. Il est évident que ce cas qui donne deux valeurs imaginaires pour φ, doit être joint au dernier des cas précédents qui est caractérisé par la même condition $B - A^2 > 0$.

Dans le premier cas, $B - A^2 < 0$, lorsque toutes les racines sont réelles et qu’elles diffèrent de zéro, $-\frac{d\varphi}{dt}$ est une valeur réelle, si φ varie d’une racine positive vers l’autre aussi positive, ou d’une racine négative vers l’autre aussi négative, c. à d. le mobile reste tout le temps entre deux parallèles situés du même côté de l’équateur et ne peut pas traverser ce dernier.

Dans le second cas, $B - A^2 = 0$, lorsque toutes les racines sont réelles mais que deux d’entre elles sont nulles, $\frac{d\varphi}{dt}$ est une valeur réelle si φ varie entre la racine positive et zéro, ou entre la racine négative et zéro, c. à d. la trajectoire du mobile est située toute entière entre l’équateur et un parallèle qui se trouve sur l’un ou l’autre côté de l’équateur; dans ce cas aussi, le mobile ne peut pas, traverser l’équateur, parce que $\frac{d\varphi}{dt}$ est nulle pour $\varphi = 0$.
Dans le troisième cas, \(B - A^2 > 0 \), lorsque deux racines sont réelles et les deux autres imaginaires, \(\frac{d^2 \theta}{dt^2} \) est une valeur réelle si \(\varphi \) varie entre la racine positive et la négative, c. à d. le mobile oscille entre des parallèles situés symétriquement de deux côtés de l’équateur.

Lorsque toutes les quatre racines sont imaginaires ou nulles, ou que deux d’entre elles sont imaginaires et les deux autres nulles, ça fait voir que les données initiales sont impossibles, ou que le mobile reste toujours sur l’équateur; nous laissons de côté ces cas.

Après avoir intégré les équations (IV), (V) et (VI), on aura en général des intégrales elliptiques de la troisième espèce. Les transformations préliminaires qui sont ici nécessaires, seront essentiellement différentes selon les racines du polynôme qui figure sous le radical dans les équations (V) et (VI). C’est pourquoi la recherche ultérieure doit être divisée en trois parties selon les trois cas indiqués: 1° toutes les racines sont réelles, ou le mobile ne peut pas traverser l’équateur; 2° deux racines sont nulles, ou le mobile peut parvenir à l’équateur, mais non pas le traverser; 3° deux racines sont réelles et deux autres imaginaires, ou le mobile traverse l’équateur.

§ 2.

Discussons d’abord le premier cas et considérons le mouvement dans l’hémisphère septentrional.

Soient \(\varphi_1 \) et \(\varphi_2 \) les parallèles limites, et soit \(\varphi_1 > \varphi_2 \). Si \(A \) et \(B \) sont connues on trouve \(\varphi_1 \) et \(\varphi_2 \) au moyen de l’équation (X); le signe + correspond à \(\varphi_1 \), et le signe— à \(\varphi_2 \). Réciproquement, si \(\varphi_1 \) et \(\varphi_2 \) sont connues, on peut déterminer \(A \) et \(B \) en fonction de \(\varphi_1 \) et \(\varphi_2 \), en remplaçant \(\varphi \) dans l’équation (IX) par \(\varphi_1 \) et \(\varphi_2 \). Ainsi on a:

\[
A = \pm \frac{\omega \text{cs} \varphi_1 \cdot \text{cs} \varphi_2}{\sqrt{(1 - e^2 \text{sn}^2 \varphi_1)(1 - e^2 \text{sn}^2 \varphi_2)}};
\]

\[
B = \omega \frac{\text{cs}^2 \varphi_1 - \text{sn}^2 \varphi_2(1 - e^2 \text{sn}^2 \varphi_2)}{(1 - e^2 \text{sn}^2 \varphi_1)(1 - e^2 \text{sn}^2 \varphi_2)} = \omega \frac{\text{cs}^2 \varphi_2 - \text{sn}^2 \varphi_1(1 - e^2 \text{sn}^2 \varphi_1)}{(1 - e^2 \text{sn}^2 \varphi_1)(1 - e^2 \text{sn}^2 \varphi_2)}.
\]

Si l’on substitue ces expressions de \(A \) et \(B \) dans l’équation (VII), on aura

\[
v = a \omega \left\{ \frac{\text{cs} \varphi_2}{\sqrt{1 - e^2 \text{sn}^2 \varphi_2}} = \frac{\text{cs} \varphi_1}{\sqrt{1 - e^2 \text{sn}^2 \varphi_1}} \right\}.
\]

Dans les expressions de \(A \) et de \(v \), on doit prendre simultanément les deux signes supérieurs, ou les deux inférieurs.
Donc, si l'on connaît φ_1 et φ_2, on aura toutes les données nécessaires pour déterminer le mouvement. Mais à chaque paires de valeurs de φ_1 et φ_2 correspond deux mouvements de différente espèce. Analytiquement ils ne diffèrent l'un de l'autre que par le signe de A; le signe de A dépend de la direction suivant laquelle tourne le plan méridien mené par le mobile, dans le mouvement absolu; A étant positif, cette rotation du plan méridien du mobile se fait dans le même sens que la rotation de la terre; A étant négatif, celle-là se fait dans le sens contraire. Par conséquent, ces deux espèces de mouvement relatif correspondant à deux mouvements absolu qui ne diffèrent l'un de l'autre que par la direction de la rotation du plan méridien du mobile. Si la rotation de la terre ait changé sa direction, les trajectoires des mouvements relatifs seraient les mêmes, mais elles correspondraient aux mouvements absolu inverses et seraient parcourues en sens contraire.

L'équation (XII) montre que dans le cas donné de mouvement v ne peut pas être plus grand que $2a\omega$. Ensuite, il est facile de voir que, si φ_1 est une valeur donnée et que φ_2 varie entre φ_2 et $\frac{\pi}{2}$, v est toujours compris entre zéro et $\frac{2a\omega cs \varphi_1}{\sqrt{1-e^2sn^2\varphi_1}}$.

Si, dans l'équation (IV), on substitue à A son expression (XI), il viendra

$$\frac{dl}{dt} = \pm \omega \frac{cs \varphi_2 cs \varphi_3}{cs \varphi_1} \frac{1-e^2sn^2\varphi}{\sqrt{(1-e^2sn^2\varphi_1)(1-e^2sn^2\varphi_2)}} - \omega$$

Il en résulte que, A ayant une valeur négative, $\frac{dl}{dt}$ conserve tout le temps une valeur négative et sa valeur absolue est plus grande que ω; donc, le temps croissant, la longitude décroît constamment. A étant une valeur positive, $\frac{dl}{dt}$ change de signe; pendant le mouvement, donc l ira tantôt en croissant, tantôt en diminuant.

Lorsque le mobile passe par le parallèle φ_2, qui satisfait à la condition

$$\frac{cs \varphi_2}{1-e^2sn^2\varphi_2} = \frac{cs \varphi_1 cs \varphi_3}{\sqrt{(1-e^2sn^2\varphi_1)(1-e^2sn^2\varphi_2)}},$$

$\frac{dl}{dt}$ devient égal à -2ω si l'on a A négative et $\frac{dl}{dt}$ s'annule c. à d. le mobile se met, dans cet instant, suivant le méridien, si l'on a A positive.

Si φ_1 tend vers φ_2, $\frac{dl}{dt}$ tend vers le zéro pour le signe supérieur, et vers -2ω pour l'inférieur, c. à d. dans le premier cas on a pour limite un repos relatif, dans le second
cas—le mouvement suivant le parallèle de l’est vers l’ouest avec la vitesse constante

\[v = \frac{2a\omega \cos \varphi}{\sqrt{1 - e^4 \sin^2 \varphi}}. \]

A étant nul ou \(\varphi = \frac{\pi}{2} \), c. à d. la trajectoire passant par le pôle, \(\frac{dl}{dt} \) est toujours égal à \(-\omega\), excepté le cas \(\varphi = \varphi_1 = \frac{\pi}{2} \) lorsque l’on a \(\frac{dl}{dt} = \pm \infty \).

On peut comprendre le sens de cette expression indéterminée, en ayant égard à ce que, pendant le passage du mobile par le pôle, sa longitude varie, au bout d’un temps infiniment petit, d’une valeur finie \(\pm \pi \). Maintenant on a le seul mouvement correspondant à \(\varphi_1 \) et \(\varphi_2 \) dont la vitesse relative \(v \) est égale à

\[\frac{a\omega \cos \varphi_1}{\sqrt{1 - e^4 \sin^2 \varphi_2}}. \]

En considérant les équations du mouvement absolu (III), on peut voir que pour \(\varphi_1 = \frac{\pi}{2} \) la première nous donne \(\frac{dL}{dt} = 0 \), excepté le cas \(\varphi = \frac{\pi}{2} \) où l’on a \(\frac{dL}{dt} = \pm \infty \); par conséquent, si l’on a \(\varphi_1 = \frac{\pi}{2} \), le mobile reste tout le temps du mouvement dans le même plan méridien fixe; l’expression indéterminée, lorsque l’on a \(\varphi = \frac{\pi}{2} \), peut être expliquée, de même que dans le mouvement relatif. Donc dans ce cas le mobile se meut de la manière analogue à l’oscillation du pendule simple dans un plan. Il est clair que, pendant le passage du mobile par le pôle, la vitesse absolue est la même que la vitesse relative.

De ce que nous venons de dire on peut tirer la conclusion intéressante qui caractérise la relation entre la force d’attraction de la terre, la forme de la terre et la vitesse de sa rotation; savoir, si un point situé en repos relatif sur une parallèle \(\varphi \), perdait toute sa vitesse absolue ou, ce qui est la même chose, recevait la vitesse relative égale à celle-là et dirigée de l’est vers l’ouest, il commencerait le mouvement vers le pôle et passerait par celui-ci avec une vitesse égale à celle perdue, c. à d. à

\[\frac{a\omega \cos \varphi_1}{\sqrt{1 - e^4 \sin^2 \varphi_1}}. \]

Le pendule conique a la même propriété seulement lorsque l’angle d’écart de la verticale reste très petit. Dans ce cas, le pendule dévié de l’angle \(\alpha \) passe par sa position d’équilibre avec la vitesse égale à \(\alpha \sqrt{g} \) et il doit avoir la même vitesse pour décrire un côte circulaire, en faisant constamment avec la verticale l’angle \(\alpha \).

Revenons aux équations (V) et (VI) et, après avoir fait quelques transformations, intégrons les premiers membres et indiquons seulement l’intégration des seconds membres:

\[t - t_0 = \pm \sqrt{1 - e^4} \int_{\varphi_0}^{\varphi} \frac{d\sin \varphi}{(1 - e^4 \sin^2 \varphi) R}. \]

\(\text{ Nouv. Mémoires. Tome XIV. } \)

23
\[l - l_0 = \pm \sqrt{1 - e^t} \int_{\varphi_0}^{\varphi} \left\{ \frac{A}{c^2 \varphi} - \frac{\omega}{1 - e^t \sin^2 \varphi} \right\} \frac{d\sin \varphi}{K}, \]
(XVI)

où est \(R^2 = - (\omega^2 - Be^t) \sin^2 \varphi + [\omega^2 + A^2 e^t - B(1 + e^t)] \sin^2 \varphi - B - A^2; \quad \varphi_0, l_0, \varphi_1, l_1, \varphi_2 \) sont valeurs correspondantes initiales et finales.

L'équation \(R^2 = 0 \) résolue par rapport à \(\sin \varphi \), a quatre racines: \(\sin \varphi_1, \sin \varphi_2, -\sin \varphi_1, -\sin \varphi_2 \); supposons que l'on ait \(\sin \varphi_1 > \sin \varphi_2 \).

Pour produire d'autres transformations, faisons usage des formules données par M. Durège *):

\[
\frac{x - y}{x - q} = -\sqrt{\frac{(p - \pi)(p - \pi)}{(q - \pi)(q - \pi)}}, \quad 1 - z = \frac{1 - \xi}{1 + \xi}; \quad x - \pi = -\sqrt{\frac{(p - \pi)(q - \pi)}{(p - \pi)(q - \pi)}}, \quad \frac{1 - \xi}{1 + \xi};
\]

\[
\frac{dx}{\sqrt{A'(x - p)(x - q)(x - \pi)}} = \frac{2\sqrt{k}}{\sqrt{A'(p - q)(\pi - x)}} \frac{dz}{\sqrt{(1 - z^2)(1 - k^2 z^2)}};
\]

\[
\frac{1 - k}{1 + k} = -\sqrt{\frac{(p - \pi)(q - \pi)}{(p - \pi)(q - \pi)}},
\]

On y suppose que l'ancienne variable \(x \) et la nouvelle \(z \) augmentent et diminuent simultanément de manière que les valeurs de \(z: -1, -1 - \frac{1}{k}, +1, +1 \), correspondent à celles de \(x: \pi, p, q, z \).

Dans notre cas: \(x = \sin \varphi, \quad \pi = -\sin \varphi_1, \quad p = \sin \varphi_4, \quad q = \sin \varphi_4, \quad z = -\sin \varphi_1, \quad A' = - (\omega^2 - Be^t); \quad z \) est la nouvelle variable, \(k \) — le module.

En substituant ces valeurs dans les formules ci-dessus, on a

\[
k = \left(\frac{\sin \varphi_1 - \sin \varphi_4}{\sin \varphi_1 + \sin \varphi_4} \right)^{\frac{1}{2}},
\]

\[
\sin \varphi = \frac{\sin \varphi_4}{\sin \varphi_4 - \sin \varphi_1} \frac{\sqrt{\sin \varphi_4} + \sin \varphi_2 \cdot \sqrt{\sin \varphi_4} - (\sqrt{\sin \varphi_1} - \sin \varphi_2 \cdot \sqrt{\sin \varphi_4}) \cdot \frac{dz}{2 \sqrt{\sin \varphi_1 - \sin \varphi_2}},
\]

\[
z = \frac{\sqrt{\sin \varphi_4} - \sqrt{\sin \varphi_1}}{\sqrt{\sin \varphi_4} + \sqrt{\sin \varphi_2}}, \quad \sin \varphi = \sqrt{\sin \varphi_4}, \quad \sin \varphi_1, \quad \sin \varphi_2, \quad \sin \varphi_3;
\]

\[
\frac{d\sin \varphi}{K} = \frac{2dz}{(\sqrt{\sin \varphi_1} + \sqrt{\sin \varphi_2}) \sqrt{(\omega^2 - Be^t)(1 - z^2)(1 - k^2 z^2)}},
\]

* Durège. Théorie der elliptischen Functionen 1868 p. 50.
Ensuite, posant, pour abréger:
\[\sqrt{\text{sn}} \tau_1 \cdot \sqrt{\text{sn}} \tau_2 = b, \sqrt{\text{sn}} \tau_1 + \sqrt{\text{sn}} \tau_2 = c, \sqrt{\text{sn}} \tau_1 - \sqrt{\text{sn}} \tau_2 = \delta, \]
et ayant égard aux équations que nous venons d’obtenir, on a des équations (XV) et (XVI):

\[t - t_0 = \pm \frac{2\sqrt{1 - \epsilon^2}}{c^2 \sqrt{\omega z - Be^2}} \int_{\gamma_0}^{\gamma} \frac{dz}{\left(1 - \epsilon^2 b^2 \left(\frac{c + \partial x}{c - \partial x}\right)\right)^{\frac{z}{2}}} \sqrt{(1 - z^2)(1 - k^4 z^2)} \]

\[t - t_0 = \pm \frac{2\sqrt{1 - \epsilon^2}}{c^2 \sqrt{\omega z - Be^2}} \int_{\gamma_0}^{\gamma} \frac{dz}{\left(1 - b^2 \left(\frac{c + \partial x}{c - \partial x}\right)^2\right)^{\frac{z}{2}}} \frac{A}{1 - b^2 \left(\frac{c + \partial x}{c - \partial x}\right)^2} \sqrt{(1 - z^2)(1 - k^4 z^2)} \]

\[z \text{ et } \gamma \text{ correspondant à } \gamma \text{ et } \gamma_n. \]

Ici encore on a le signe double parce que, \(t \) croissant, la variable \(z \) tantôt croît, tantôt décroît, de même que \(\gamma \); à la variation de \(\gamma \) de \(\gamma_1 \) à \(\gamma_2 \) correspond celle de \(z \) de \(+1 \) à \(-1 \) et vice-versa.

Au lieu de \(z \) prenons, comme on le fait ordinairement, une autre variable angulaire \(\psi \) qui satisfasse à la condition \(z = \text{sn} \psi \). Il est facile de voir dans les formules (XVII) que les valeurs correspondantes de \(\psi \) et \(\gamma \) seront:

\[\psi = 0 \quad \pi \quad \frac{\pi}{2} \quad \frac{3\pi}{2} \quad 2\pi \ldots \]

\[\gamma = \gamma_1 \quad \gamma_2 \quad \gamma_4 \quad \gamma_6 \quad \gamma_8 \ldots \]

La latitude \(\gamma_4 \) satisfait à l’égalité
\[\text{sn} \gamma_4 = \sqrt{\text{sn} \gamma_4 \cdot \text{sn} \gamma_2}. \]

On peut voir de là que, lorsque le temps croît et que \(\gamma \) varie de \(\gamma_1 \) à \(\gamma_2 \) et à l’inverse, \(\psi \) peut être regardée comme valeur successivement croissante; donc après avoir introduit \(\psi \) au lieu de \(z \), on n’a que le signe \(+\):

\[t - t_0 = \frac{2\sqrt{1 - \epsilon^2}}{c^2 \sqrt{\omega z - Be^2}} \int_{\psi_0}^{\psi} \frac{d\psi}{\left(1 - \epsilon^2 b^2 \left(\frac{c + \partial x}{c - \partial x}\right)\right)^{\frac{z}{2}}} \sqrt{1 - k^4 \text{sn}^2 \psi} \]

\[t - t_0 = \frac{2\sqrt{1 - \epsilon^2}}{c^2 \sqrt{\omega z - Be^2}} \int_{\psi_0}^{\psi} \frac{dz}{\left(1 - b^2 \left(\frac{c + \partial x}{c - \partial x}\right)^2\right)^{\frac{z}{2}}} \frac{A}{1 - b^2 \left(\frac{c + \partial x}{c - \partial x}\right)^2} \sqrt{1 - k^4 \text{sn}^2 \psi}; \]

\(\psi \) et \(\psi_n \) correspondent à \(t \) et \(t_n \).
On peut voir facilement que, dans les équations précédentes, les intégrales prises de \(\psi = \frac{\pi}{2} \) à \(\psi = \frac{3\pi}{2} \) ont les mêmes valeurs que celles prises de \(\psi = \frac{3\pi}{2} \) à \(\psi = \frac{5\pi}{2} \) etc., c. à d. la trajectoire du mobile se divise en parties égales dans les points correspondants à \(\psi = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots \), ou à \(\varphi = \varphi_1 \) et \(\varphi = \varphi_2 \). Appelons "tour du mobile" ou "tour de la trajectoire" une partie de la trajectoire parcourue par le mobile pendant que \(\psi \) varie de \(2\pi \). Il est évident que \(\psi - \psi_0 \) étant égale à \(2\pi \), la valeur de nos intégrales ne dépend pas de \(\psi_0 \). Les valeurs \(t_{\psi+2\pi} - t_{\psi} \) et \(l_{\psi+2\pi} - l_{\psi} \) ne dépendent donc pas de \(\psi_0 \).

Par conséquent, la différence des longitudes de deux points correspondants situés sur la même parallèle et appartenant à deux tours successifs de la trajectoire, est une valeur constante.

Dans ce qui va suivre nous nous bornons à une approximation qui est tout à fait suffisante pour faire connaître le mouvement dont il s'agit. Transformons les équations (XVIII) et (XIX) pour le cas où \(k^2 \) est si petit qu'on le puisse supposer nul sans commettre une erreur sensible. Ce cas a lieu, en effet, si \(\varphi_1 \) et \(\varphi_2 \) ne sont pas trop petites et qu'elles ne diffèrent l'une de l'autre que peu.

Le tableau suivant contient les valeurs de \(\log k^2 \) pour les valeurs diverses de \(\varphi_1 \) et \(\varphi_2 \).

<table>
<thead>
<tr>
<th>(v^m)</th>
<th>(\varphi_1)</th>
<th>(\varphi_2)</th>
<th>(\log k^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10''</td>
<td>11°59',8</td>
<td>1° 0'</td>
<td>9.0035388—10</td>
</tr>
<tr>
<td>1'</td>
<td>3°54',4</td>
<td>1° 0'</td>
<td>8.0630924—10</td>
</tr>
<tr>
<td>9',9606</td>
<td>32°23',1</td>
<td>30° 0'</td>
<td>2,9421012—10</td>
</tr>
<tr>
<td>1'</td>
<td>30°14',8</td>
<td>30° 0'</td>
<td>9.0672820—20</td>
</tr>
<tr>
<td>169',399</td>
<td>70° 0'</td>
<td>45° 0'</td>
<td>5,404376—10</td>
</tr>
<tr>
<td>328',489</td>
<td>90° 0'</td>
<td>45° 0'</td>
<td>5,7465956—10</td>
</tr>
<tr>
<td>231',948</td>
<td>90° 0'</td>
<td>60° 0'</td>
<td>4,222560—10</td>
</tr>
</tbody>
</table>

\(\log \) désigne le logarithme vulgaire.

La première colonne donne la vitesse en une seconde de temps sidéral; pour la calculer on a fait usage de la formule (XII) avec le signe supérieur.

Quant à l'erreur que l'on fait dans les valeurs de \(t-t_0 \) et \(t-t'_0 \), supposant \(k^2=0 \), on peut de la manière suivante déterminer la limite que cette erreur ne dépasse pas. En posant \(k^2=0 \), on diminue les valeurs de tous les éléments de l'intégrale dans la formule (XVIII);
cette diminution est la plus grande pour les éléments ayant $sn^2 \varphi = 1$. Si tous les éléments d'intégrale avaient le facteur $\frac{1}{\sqrt{1-k^2}}$ ou $1 - \frac{k^2}{2}$ au lieu de $\frac{1}{\sqrt{1-k^2}sn^2 \varphi}$, on ferait, en posant $k^2 = 0$, une erreur plus grande; par conséquent, le produit $\frac{k^2}{2}(t - t_0)$ nous donne la limite cherchée pour l'erreur de $t - t_0$. Dans l'équation (XIX) les deux termes sous l'intégrale, le positif et le négatif, se changent dans le même sens, si l'on suppose $k^2 = 0$; c'est pourquoi l'erreur de la différence sera toujours bien moindre que l'erreur du plus grand terme; donc le plus grand terme sous l'intégrale multiplié par $\frac{k^2}{2}$ peut être pris pour limite cherchée de l'erreur de $t - t_0$. Quant aux valeurs numériques de ces erreurs pour les différents cas, on les trouve dans les exemples ajoutés à la fin.

Après avoir posé $k^2 = 0$, nos intégrales ne sont plus elliptiques.

Au moyen de quelques transformations simples, on ramène les équations (XVIII) et (XIX) à la forme:

$$l - t_0 = \frac{2 \sqrt{1 - e^2}}{e^2(1 - e^2 b^4) \sqrt{\omega^2 - B e^2}} \int_{\varphi_0}^{\varphi} d\varphi \left[1 + \frac{4e^2 b^2 c \cdot sn^2 \varphi}{\partial (1 - e^2 b^2) \left\{ sn^2 \varphi - \frac{2c(1 + e^2 b^2)}{\partial (1 - e^2 b^2) sn^2 \varphi} \cdot \frac{1}{\partial^2} \right\}} \right];$$

$$l - t_{00} = \frac{2 \sqrt{1 - e^2}}{e^2 \sqrt{\omega^2 - B e^2}} \int_{\varphi_0}^{\varphi} d\varphi \left[\frac{A}{1 - e^2} \left\{ 1 + \frac{4b^2 c \cdot sn^2 \varphi}{\partial (1 - e^2) \left\{ sn^2 \varphi - \frac{2c(1 + e^2 b^2)}{\partial (1 - e^2) sn^2 \varphi} \cdot \frac{1}{\partial^2} \right\}} \right\} \right];$$

En intégrant ces expressions, on a

$$l - t_0 = \frac{2 \sqrt{1 - e^2}}{e^2 \sqrt{\omega^2 - B e^2}} \left\{ \varphi + 2eb \left[\frac{1}{\sqrt{1 - \frac{c^2}{\partial^2} \left(1 + eb \right) \left(1 - eb \right)}} \arctg \frac{\varphi}{2} \frac{\partial (1 + eb)}{c(1 - eb)} \right] \arctg \frac{\varphi}{2} \frac{\partial (1 - eb)}{c(1 + eb)} \right\}$$

$$- \frac{1}{\sqrt{1 - \frac{c^2}{\partial^2} \left(1 - eb \right) \left(1 + eb \right)}} \arctg \frac{\varphi}{2} \frac{\partial (1 - eb)}{c(1 + eb)} \right\} \arctg \frac{\varphi}{2} \frac{\partial (1 + eb)}{c(1 - eb)} \right\};$$

(XX)
\[t_n - t_0 = \frac{2 \sqrt{1 - e^2}}{c^3 \sqrt{\omega^2 - B e^2}} \left\{ \frac{A}{1 - b^2} \left[\psi + 2b \left(\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + b}{1 - b} \right)^2}} \right) \arctan \left(\frac{\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + b}{1 - b} \right)^2}}}{2} - \frac{\partial (1 + b)}{c (1 - b)} \right) \right] \right. \\
\left. - \frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + b}{1 - b} \right)^2}} \arctan \left(\frac{\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + b}{1 - b} \right)^2}}}{2} - \frac{\partial (1 - b)}{c (1 + b)} \right) \right) \right\} \] \\
\[\psi = \frac{\omega}{1 - e^2 b^2} \left[\psi + 2eb \left(\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + eb}{1 - eb} \right)^2}} \right) \arctan \left(\frac{\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + eb}{1 - eb} \right)^2}}}{2} - \frac{\partial (1 + eb)}{c (1 - eb)} \right) \right] \\
\left. - \frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + eb}{1 - eb} \right)^2}} \arctan \left(\frac{\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + eb}{1 - eb} \right)^2}}}{2} - \frac{\partial (1 - eb)}{c (1 + eb)} \right) \right) \right\] \] (XXI)

Posant \(\psi_0 = 0 \) et \(\psi = 2\pi \), on trouve la durée d’un tour du mobile et la variation de la longitude géographique du mobile après un tour. Après avoir remplacé \(A \) et \(B \) par les expressions (XI), il viendra

\[T = \frac{4\pi \sqrt{(1 - e^2 \sin^2 \varphi_1)(1 - e^2 \sin^2 \varphi_2)}}{\omega c^3 (1 - e^2 b^5)} \left\{ 1 + eb \left[\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + eb}{1 - eb} \right)^2}} \right] \right. \\
\left. - \frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + eb}{1 - eb} \right)^2}} \right\} \] (XXII)

\[\psi_n + 2\pi - \psi_n = \frac{4\pi \sqrt{(1 - e^2 \sin^2 \varphi_1)(1 - e^2 \sin^2 \varphi_2)}}{c^3 (1 - e^2 b^5)} \left\{ \frac{\pm \cos \varphi_1 \cos \varphi_2}{(1 - b^2) \sqrt{(1 - e^2 \sin^2 \varphi_1)(1 - e^2 \sin^2 \varphi_2)}} \right\} \left[\frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + b}{1 - b} \right)^2}} \right. \\
\left. - \frac{1}{\sqrt{1 - \frac{\partial^2}{c^2} \left(\frac{1 + b}{1 - b} \right)^2}} \right] \right\} \] (XXIII)

où \(T \) est la durée d’un tour du mobile, \(\tau \) — l’intervalle de 24 heures de temps sidéral.
Puisque dans l'équation (XXII) on n'a qu'un signe, la durée d'un tour, en cas de
l'une et de l'autre espèce de mouvement entre \(\varphi_1 \) et \(\varphi_2 \), est la même; c'est ce que l'on
devait attendre, en ayant égard à ce que nous avons dit plus haut sur la différence des
deux espèces de mouvement.

La valeur de \(l_{\varphi_1} + 2\pi - l_{\varphi_1} \) que donne l'équation (XXIII), est toujours négative, tant
pour le signe supérieur de \(A \) que pour le signe inférieur; elle est plus grande que \(2\pi \) dans le
cas du signe inférieur. C'est ce qu'on pouvait prévoir, en tenant compte de ce que le rayon
de courbure de la projection de la courbe sur le plan tangent est plus grand dans les
parties de la courbe plus proches de l'équateur que dans les parties de la courbe
plus éloignées de l'équateur. Cette considération a plus d'importance dans le voisinage de
l'équateur où nos équations (XXII) et (XXIII) ne sont pas suffisantes.

Si \(\varphi_1 \) et \(\varphi_2 \) s'approchent l'une de l'autre tellement que non seulement \(k^2 \), mais aussi
\(k \) sont à peu près nuls, on peut, en prenant au lieu de \(\varphi_1 \) et \(\varphi_2 \) une valeur moyenne
\(\varphi' \) dont le sinus est compris entre

\[
\frac{\sin \varphi_1 - \sin \varphi_2}{2} et \sqrt{\frac{\sin \varphi_1 \sin \varphi_2}, \]

ramener les équations (XXII) et (XXIII). la dernière en cas du signe inférieur, à la
forme:

\[T = \frac{\varphi'}{2 \sin \varphi'}, \quad \text{(XXIV)} \]

\[l_{\varphi_1} + 2\pi - l_{\varphi_1} = -\frac{2\pi}{\sin \varphi'}. \quad \text{(XXV)} \]

L'équation (XXIII) donne pour le signe supérieur une valeur qui, \(\varphi_1 - \varphi_2 \), décrois-
sant, tend rapidement vers zéro, e. à d. chaque tour de la trajectoire tend dans sa forme
vers une courbe fermée, à savoir un cercle.

On voit de l'équation (XXIV) que l'on peut prendre la durée d'un tour \(T \) pour une
valeur indépendante de la vitesse de mouvement, si \(\varphi_1 - \varphi_2 \) ou, ce qui est la même
chose, pour le signe supérieur, la vitesse \(v \) est si petite que l'on peut considérer
la latitude du mobile pour tout le temps de mouvement comme valeur constante. Cette durée
d'un tour \(T \) la moitié de celle d'une rotation du plan d'oscillation du pendule dans
l'expérience de Foucault.

Il résulte aussi de l'équation (XXIV) que la plus courte durée d'un tour du mobile
est égale à 12 heures de temps sidéral. Si \(\varphi_1 \), ayant une valeur donnée, \(\varphi_1 \) varie de
\(\varphi_1 \) à \(\frac{\pi}{2} \), la durée d'un tour \(T \) reste tout le temps entre les limites \(\frac{\pi}{2 \sin \varphi_1} \) et \(\frac{\pi}{2} \).
\(\varphi_t \) tendant vers \(\varphi_2 \), la valeur de \(l_{2\pi} - l_0 \) tend vers les limites 0 et \(-\frac{2\pi}{sn \varphi_2} \); et si, \(\varphi_2 \) étant constante, on augmente \(\varphi_t \) de \(\frac{\pi}{2} \), \(l_{2\pi} - l_0 \) croît en valeur absolue en cas du signe supérieur et décroît en cas du signe inférieur; la différence entre les valeurs de \(l_{2\pi} - l_0 \) qui correspondent aux différents signes, diminue donc et a la valeur la plus petite \(2\pi \) pour \(\varphi_t = \frac{\pi}{2} \). Dans ce dernier cas, deux espèces de mouvements se confondent. Si l'on suppose que la longitude du mobile varie de \(-\pi \) pendant le passage par le pôle, on a la première espèce de mouvement; et, si l'on suppose que la longitude du mobile varie de \(-\pi \), on a la seconde espèce de mouvement.

Quand \(\varphi_2 \) varie de \(\frac{\pi}{2} \) jusqu'à une valeur aussi petite que l'on veut, \(l_{2\pi} - l_0 \) passe par toutes les valeurs depuis zéro jusqu'à une valeur aussi grande que l'on veut.

Si l'on a \(\varphi_t = \frac{\pi}{2} \), l'équation (XXIII) devient indéterminée; à savoir, l'expression

\[
\sqrt{1 - \frac{\beta^2}{c^2} \left(1 + \frac{b}{1 - b}\right)}
\]

\(\varphi_t = \frac{\pi}{2} \) à la forme \(0 \). Après avoir éliminé cette expression indéterminée, on a

\[
l_{\varphi_t + 2\pi} - l_0 = \frac{4\pi \sqrt{sn \varphi_2} \sqrt{1 + sn \varphi_2}}{\sqrt{2} \cdot (1 + \sqrt{sn \varphi_2})^2} - \frac{4\pi \sqrt{1 - \theta^2} \sqrt{1 - \theta^2 sn^2 \varphi_2}}{(1 - \theta^2 (1 - sn^2 \varphi_2))(1 - \theta^2 sn^2 \varphi_2)} \left\{ \frac{1}{\sqrt{1 - \frac{\theta^2}{c^2} \left(1 + \theta^2 sn^2 \varphi_2 \right)}} - \frac{1}{\sqrt{1 - \frac{\theta^2}{c^2} \left(1 + \theta^2 sn^2 \varphi_2 \right)}} \right\}
\]

(XXVI)

Le terme au double signe n'est égal exactement à \(\pm \pi \) que pour \(\varphi_t = \frac{\pi}{2} \); c'est notre supposition \(k^2 = 0 \) qui produit cette différence. Mais celle-ci, comme on l'a vu plus haut, est toujours moindre que \(\frac{k^2}{2 \pi} \); ainsi pour \(\varphi_t = 45^\circ \) le terme dont il s'agit diffère de \(\pm \pi \) moins que de \(-0,0000277 \pi \) ou \(-17''\), 95. Quand \(\varphi_t \) croît, cette différence diminue rapidement.

En ayant égard à tout ce que nous avons dit sur les variations de \(T \) et de \(l_{2\pi} - l_0 \), il est facile de voir que \(l_{2\pi} - l_0 \) qui est égal au terme avec le signe double de l'expres-
sion de $t_2 - t_0$, est toujours une valeur plus grande que $\pm \pi$, et n'est égale à $\pm \pi$ que pour $\varphi = \frac{\pi}{2}$. La propriété analogue a lieu, comme on le sait, aussi pour le pendule.

Pour $\varphi = \frac{\pi}{2}$, l'équation (XXIV) peut être représentée sous une autre forme. Dans ce cas, $sn'\varphi$ est compris entre $\frac{1-\sin \varphi_2}{2}$ et $\sqrt{\sin \varphi_2}$. Posant $\frac{\pi}{2} - \varphi = \alpha$, on a $\sin^2 \varphi_2 = 1 - \sin^2 \alpha = 1 - \alpha^2$, ou $sn'\varphi = \frac{\alpha}{2}$ parce que α est une valeur très petite; $sn'\varphi$ peut donc être remplacé par $1 - \frac{\alpha^2}{4}$. En substituant cette valeur à $sn'\varphi$ dans l'équation (XXIV), il viendra:

$$T' = \frac{\tau}{2} \left(1 - \frac{\alpha^2}{4}\right).$$

(XXVII)

Les oscillations du mobile sont donc, dans ce cas, à peu près autant isochrones que celles du pendule dans les conditions analogues.

Le tableau suivant donne T, la durée d'une oscillation du mobile qui passe par le pôle et s'en écarte jusqu'à la latitude φ_2.

<table>
<thead>
<tr>
<th>φ_2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auprès du pôle</td>
<td>$12^h 0^m 0^s$</td>
</tr>
<tr>
<td>89°</td>
<td>$12^h 0^m 3^s 29^s$</td>
</tr>
<tr>
<td>60°</td>
<td>$12^h 54^m 25^s 0^s$</td>
</tr>
<tr>
<td>45°</td>
<td>$14^h 9^m 42^s 6^s$</td>
</tr>
</tbody>
</table>

Les deux derniers de ces exemples sont calculés d'après la formule (XXII).

Pour avoir la valeur de la pression, il faut substituer, dans la formule (VIII), à B sa valeur (XI); alors on a

$$N = g + ao^2\{1 - e^2\sin^2\varphi\} \left\{1 - \frac{2\sin^2\varphi + e^2\sin^2\varphi}{(1 - e^2\sin^2\varphi)^2} + \frac{1 - (\sin^2\varphi_1 + \sin^2\varphi_2) + e^2\sin^2\varphi_1\sin^2\varphi_2}{(1 - e^2\sin^2\varphi_1)(1 - e^2\sin^2\varphi_2)}\right\}.$$

Puisque aucun terme de cette expression ne contient le double signe, il est évident que la pression a la même valeur pour les deux espèces de mouvement du mobile entre les parallèles φ_1 et φ_2.

Nouv. Mémoires. Tome XIV.

24
Pour le mouvement suivant le parallèle de \(E \) à \(IV \) la pression est constante, égale au poids du mobile.

\(\varphi \) variant de \(\varphi_2 \) à \(\varphi_4 \) et à l'inverse, c. à d. pendant chaque tour, la pression \(N \) sera comprise entre telles limites

\[
g + \frac{a \omega^2}{\sqrt{1-e^2 \sin^2 \varphi_4}} \left(\frac{1-e^2 (\sin^2 \varphi_4 - \sin^2 \varphi_2)}{1-e^2 \sin^2 \varphi_4} \right) > N > g \]

\[
- \frac{a \omega^2}{\sqrt{1-e^2 \sin^2 \varphi_2}} \left(\frac{1-e^2 (\sin^2 \varphi_4 - \sin^2 \varphi_2)}{1-e^2 \sin^2 \varphi_2} \right).
\]

Dans le mouvement dans l'hémisphère méridional la variation de la latitude, et de la longitude du mobile se passe de même que dans l'hémisphère septentrional, parce que les équations différentielles du mouvement (IV) et (V) ne dépendent que du second degré de \(\sin \varphi \). Les mouvements dans l'hémisphère méridional et septentrional que nous donnent les équations (IV) et (V), se passent symétriquement par rapport à l'équateur comme si le mobile dans l'hémisphère méridional était l'image virtuelle d'un mobile situé dans l'hémisphère septentrional, le plan de l'équateur étant la surface de réflexion d'un miroir.

§ 3.

Discutons maintenant le second cas de mouvement quand l'équateur est l'une des parallèles limites. Dans ce cas les racines de l'équation (IX) seront \(\pm 0 \) et \(\pm \sin \varphi_4 \); \(\varphi_4 \) s'annulant, le cas précédent de mouvement tend vers le cas actuel comme vers sa limite.

On a ici, comme on l'a remarqué plus haut, \(A^2 = B \).

Ensuite, des équations (VII), (IX) et (X) il résulte

\[
A = \pm \frac{\omega \cos \varphi_4}{\sqrt{1-e^2 \sin^2 \varphi_4}}, \quad v = a \omega \left(1+\frac{\cos \varphi_4}{\sqrt{1-e^2 \sin^2 \varphi_4}} \right), \quad \sin \varphi_4 = \pm \sqrt{\frac{\omega^2 - B}{\omega^2 - B e^2}}.
\]

Dans les expressions de \(A \) et de \(v \) on doit prendre simultanément les mêmes signes, supérieurs ou inférieurs.

Chaque valeur de \(\varphi_4 \) nous détermine deux espèces de mouvement dont la relation est la même que celle de deux espèces de mouvement entre \(\varphi_4 \) et \(\varphi_2 \) dans le cas précédent.

La vitesse \(v \) du mouvement est, dans le cas actuel, en général moindre que \(2a \omega \). Ainsi, si \(v \) est plus grande que \(2a \omega \), nous n'avons que le dernier cas où le mobile traverse l'équateur; mais le premier et le second cas sont alors impossibles.

Tout ce que nous avons dit plus haut au sujet de l’équation (IV), en traitant le cas précédent, s’applique complètement dans le cas actuel; il ne faut que prendre partout \(\varphi \equiv 0 \).

C’est pourquoi nous ne regarderons que les équations (V) et (VI) qui, après l’intégration, ne donnent pas dans ce cas d’intégrales elliptiques.

Les équations (V) et (VI) ou, ce qui est la même chose, (XV) et (XVI) peuvent être ici représentées de cette manière:

\[
\begin{align*}
 t - t_0 &= \pm \sqrt{\frac{1-e^2}{\omega^2 - Be^2}} \int_{\varphi}^{\varphi'} \frac{d\varphi}{sn \varphi (1 - e^2 sn^2 \varphi) \sqrt{sn^2 \varphi_t - sn^2 \varphi}} \quad \text{(XXVIII)} \\
 l - l_0 &= \pm \sqrt{\frac{1-e^2}{\omega^2 - Be^2}} \left\{ A \int_{\varphi}^{\varphi'} \frac{d\varphi}{sn \varphi (1 - sn^2 \varphi) \sqrt{sn^2 \varphi_t - sn^2 \varphi}} \\
 &\quad - \omega \int_{\varphi}^{\varphi'} \frac{d\varphi}{sn \varphi (1 - e^2 sn^2 \varphi) \sqrt{sn^2 \varphi_t - sn^2 \varphi}} \right\} \quad \text{(XXIX)}
\end{align*}
\]

Substituons à \(\varphi \) la nouvelle variable \(\psi \) telle que \(\pm \sqrt{\frac{sn^2 \varphi_t - sn^2 \varphi}{sn^2 \varphi_t + sn^2 \varphi}} = (sn \varphi_t + sn \varphi) \cos \psi \)
ou \(\cos \psi = \pm \sqrt{\frac{sn^2 \varphi_t - sn^2 \varphi}{sn^2 \varphi_t + sn^2 \varphi}}. \)

Le temps \(t \) croissant, on doit prendre le signe supérieur, si \(\varphi \) croît aussi, et le signe inférieur, si \(\varphi \) décroît. Donc, quand \(\varphi \) varie de 0 à \(\varphi_t \), \(\psi \) croit de 0 à \(\frac{\pi}{2} \); puis quand \(\varphi \) varie de \(\varphi_t \) à 0, \(\psi \) continue à croître de \(\frac{\pi}{2} \) à \(\pi \) etc. Après cette substitution on aura:

\[
\begin{align*}
 t - t_0 &= - \frac{2\sqrt{1-e^2}}{sn \varphi_t (1 - e^2 sn^2 \varphi_t) \sqrt{\omega^2 - Be^2}} \int_{\psi}^{\psi'} \frac{(1+\cos \psi) \, d\psi}{\cos \varphi_t \left\{ \cos \psi - \frac{1+e^2 sn^2 \varphi_t}{1-e^2 sn^2 \varphi_t} - 1 \right\}} \\
 l - l_0 &= - \frac{2\sqrt{1-e^2}}{sn \varphi_t \sqrt{\omega^2 - Be^2}} \left\{ A \int_{\psi}^{\psi'} \frac{(1+\cos \psi) \, d\psi}{\cos \varphi_t \left\{ \cos \psi - \frac{1+e^2 sn^2 \varphi_t}{1-e^2 sn^2 \varphi_t} + 1 \right\}} \\
 &\quad - \omega \int_{\psi}^{\psi'} \frac{(1+\cos \psi) \, d\psi}{\cos \varphi_t \left\{ \cos \psi - \frac{1+e^2 sn^2 \varphi_t}{1-e^2 sn^2 \varphi_t} + 1 \right\}} \right\}
\end{align*}
\]

\[24^*\]
En intégrant et en remplaçant A et B par leurs valeurs, nous aurons après quelques transformations:

$$t-t_a = -\frac{1}{\omega \sin^2 \gamma} \left\{ 2\sqrt{1 - e^2 \sin^2 \gamma} \ \text{tg} \ \frac{\gamma}{2} + e \ \text{sn} \ \gamma, \ \text{arc} \ \text{tg} \left(\frac{2e \ \text{sn} \ \gamma, \ \text{cs} \ \frac{\gamma}{1 - e^2 \sin^2 \gamma} \right) \right\}_{\gamma_0}^{\gamma} \ (XXX)$$

$$t-t_b = -\frac{1}{\sin \gamma} \left\{ 2\cos \gamma, \ \text{tg} \ \frac{\gamma}{2} + \sin \gamma, \ \text{arc} \ \text{tg} \left(\frac{2\text{tg} \ \gamma, \ \text{cs} \ \frac{\gamma}{1 + e^2 \cos \gamma} \right) \right\}_{\gamma_0}^{\gamma} \ ; \ (XXXI)$$

tg désigne ici le logarithme népérien.

Dans l'expression de $t-t_a$ il faut prendre le signe supérieur si A est positif, et l'inferieur si A est négatif.

Il est facile de voir que les expressions obtenues de $t-t_a$ et de $t-t_b$ tendent vers l'infini pour $\gamma=0, \pi, 2\pi,...$; du reste, on pourrait le déduire aussi des équations (XXVIII) et (XXIX). Par conséquent, α et β étant des valeurs finies aussi petites que l'on veut, ψ ne peut varier, pendant le mouvement du mobile, que de α à $\pi-\alpha$, ce qui correspond à la variation de γ de β à γ, et inversement de γ à β. Les variations de ϕ de 0 à α, de $\pi-\alpha$ à $\pi+\alpha$ etc., ou les variations de γ de 0 à β et de β à 0 ont besoin d'un temps infiniment long, c. à d. elles n'ont point lieu en réalité. Ainsi, γ étant infiniment petite, le mobile s'approche ou s'éloigne de l'équateur avec une vitesse infiniment petite, et n'est pas en état de l'atteindre ou de s'en éloigner d'une distance finie, dans l'intervalle fini de temps, en passant toujours à peu près parallèlement à l'équateur de l'est vers l'ouest. En laissant de côté des quantités infiniment petites, on peut dire que le mobile, dans le cas donné de mouvement, parvient avec le temps à l'équateur et puis le suit constamment de l'est vers l'ouest.

Au point le plus éloigné de l'équateur, situé sur le parallèle γ, la courbe décrite par le mobile se divise en deux parties; par l'une d'entre elles le mobile s'éloigne de l'équateur, par l'autre il s'en approche, et elles sont symétriques par rapport au méridien de ce point, et se coupent sur ce méridien et sur un autre écarté du premier de 180°; l'équateur est l'asymptote des deux parties de la courbe.

Donc les variations de la latitude γ ne sont pas, dans ce cas, périodiques, ce qui a eu lieu dans le cas précédent et ce que l'on retrouve dans le cas suivant.

Pour $\gamma = \frac{\pi}{2}$ de l'équation (XXX) il vient

$$t-t_a = -\frac{1}{\omega} \left\{ 2\sqrt{1 - e^2} \ \text{tg} \ \frac{\gamma}{2} + e \ \text{arc} \ \text{tg} \left(\frac{2e \ \text{cs} \ \frac{\gamma}{1 - e^2 \sin^2 \gamma} \right) \right\}_{\gamma_0}^{\gamma} \ . \ (XXXII)$$
Dans l'équation (XXXI) pour \(\varphi = \frac{\pi}{2} \) le terme, \(\arctg \left(\frac{2tg \varphi}{1 + cs^2 \varphi} \right) \), est égal à \(\pm \frac{\pi}{2} \); le signe + a lieu pour \(\psi > \frac{\pi}{2} \), et le signe - pour \(\psi < \frac{\pi}{2} \). C'est pourquoi, si les deux limites \(\varphi_0 \) et \(\varphi \) sont simultanément plus grands ou moins grands que \(\frac{\pi}{2} \), le terme à double signe disparaît entre des limites, c. à d. pour \(\varphi_0 > \frac{\pi}{2} \) et \(\psi > \frac{\pi}{2} \), ou pour \(\varphi_0 < \frac{\pi}{2} \) et \(\psi < \frac{\pi}{2} \) on a

\[
l - l_0 = \left\{ 2\sqrt{1 - e^2 \cos \varphi} \arctg \frac{\varphi}{2} + e \arctg \left(\frac{2e \cos \varphi}{(1 - e^2 \cos \varphi)\sqrt{1 - e^2}} \right) \right\}_{\varphi_0}^{\psi}.
\]

(XXXII)

Mais si l'on a \(\psi_0 < \frac{\pi}{2} < \psi \), le terme à double signe nous donne, entre des limites, \(\pi \), et il vient:

\[
l - l_0 = \pm \pi + \left\{ 2\sqrt{1 - e^2 \cos \varphi} \arctg \frac{\varphi}{2} + e \arctg \left(\frac{2e \cos \varphi}{(1 - e^2 \cos \varphi)\sqrt{1 - e^2}} \right) \right\}_{\psi_0}^{\psi}.
\]

(XXXIII)

\(\pi \) a le signe +, \(A \) étant positif, et le signe -, \(A \) étant négatif.

L'expression indéterminée que l'on a ici pour \(\varphi = \varphi_0 = \frac{\pi}{2} \), se laisse expliquer comme dans le cas précédent de mouvement pour les conditions analogues.

La formule qui donne la pression du mobile sur la surface de la terre, peut être représentée dans le cas actuel de la manière suivante:

\[
N = g - wo^2 (1 - e^2 sn^2 \varphi) \left\{ \frac{1 - 2sn \varphi - e^2 sn^2 \varphi}{(1 - e^2 sn^2 \varphi)^{3/2}} - \frac{1 - sn \varphi}{1 - e^2 sn^2 \varphi} \right\}
\]

La pression du mobile est moindre que son poids seulement en voisinage de la latitude \(\varphi \), sur la partie relativement très petite de la courbe décrite; sur la partie la plus considérable de la courbe la pression est plus grande que le poids.

\[\text{§ 4.}\]

Considérons enfin le troisième cas de mouvement du mobile quand il traverse l'équateur; le mouvement se passe, dans ce cas, comme on l'a vu plus haut, entre deux parallèles équidistantes de l'équateur; - \(\varphi \), et - \(\varphi \). Analytiquement on peut caractériser ce cas par l'inégalité \(B - A^2 > 0 \).
Maintenant ou ne peut pas exprimer \(A \) et \(B \) en \(\pm \zeta \), seulement; il est nécessaire d'introduire encore une quantité quelconque qui caractérise plus ou moins le mouvement dont il s'agit; pour cela on peut choisir l'angle \(\theta \) que forme avec l'équateur la direction suivant laquelle le mobile traverse l'équateur en passant de l'hémisphère sud dans le nord; pour direction positive on prend sur l'équateur celle de l'ouest vers l'est.

L'équation (IV) donne entre \(A \) et \(v \), pour \(\zeta = 0 \) et pour \(\zeta = \zeta_1 \), les deux relations suivantes:

\[
\frac{v \cos \theta}{a} = A - \omega; \quad \frac{e \sqrt{1 - e'^2 \sin^2 \zeta_1}}{a \cos \zeta_1} = \frac{1 - e'^2 \sin^2 \zeta_1}{\cos \zeta_1} - \omega.
\]

Dans la seconde égalité nous avons mis les deux signes \(\pm \) avant le premier membre parce que pour \(\zeta = \zeta_1 \), \(\frac{dl}{dt} \) peut être en général tant positif que négatif, tandis que la vitesse \(v \) est une quantité absolument positive. Le signe de \(\frac{dl}{dt} \), pour \(\zeta = \zeta_1 \), dépend de celui de \(A \), et on doit prendre ici le signe supérieur pour \(A \) positif, et l'inferieur pour \(A \) négatif. Dans la première égalité on n'a pas besoin de deux signes parce que \(\cos \theta \) et \(\frac{dl}{dt} \) ont toujours le même signe pour \(\zeta = 0 \).

D'après ces égalités on a

\[
v = \pm \frac{a \omega \sin^2 \zeta_1 (1 - e^2)}{\cos \zeta_1 \sqrt{1 - e'^2 \sin^2 \zeta_1} - \cos \theta (1 - e'^2 \sin^2 \zeta_1)};
\]

\[
A = \omega (1 - \frac{a \omega \cos \theta}{a \omega} \cos \zeta_1) = \frac{\omega \cos \zeta_1 \sqrt{1 - e'^2 \sin^2 \zeta_1}}{\cos \theta (1 - e'^2 \sin^2 \zeta_1)} - \frac{\cos \zeta_1}{\sqrt{1 - e'^2 \sin^2 \zeta_1}} - \frac{\cos \zeta_1}{\cos \theta (1 - e'^2 \sin^2 \zeta_1)}, \quad (XXXV)
\]

Dans les expressions de \(A \) et de \(v \) il faut prendre le signe supérieur quand \(A \) est positif, et l'inferieur quand \(A \) est négatif. S'il arrive donc que \(A \) a une valeur négative pour le signe supérieur, et une valeur positive pour l'inferieur, ou que \(v \) a une valeur négative, cela signifie que les conditions données de mouvement sont incompatibles et qu'un tel mouvement n'est pas possible.

La vitesse \(v \) peut, dans le cas dont il s'agit, avoir toutes les valeurs possibles, de zéro jusqu'à l'infini.

\(\theta \) étant constant et \(v \) croissant, \(\zeta \), croit pour \(A \) positif, et décroit pour \(A \) négatif.
On a vu plus haut que les latitudes limites, \(\varphi_1 \) et \(\varphi_2 \), déterminent deux espèces de mouvement qui ne se confondent que pour \(\varphi_1 = \frac{\pi}{2} \). Dans le cas actuel, \(\pm \varphi_1 \) et \(\theta \) déterminent aussi deux espèces de mouvement qui se confondent pour \(\varphi_1 = \frac{\pi}{2} \), mais seulement pour \(\varphi > \frac{\pi}{2} \); pour \(\varphi < \frac{\pi}{2} \) il n'y a de possible qu'un seul mouvement correspondant à \(\pm \varphi \) et \(\theta \), qui répond au signe supérieur parce que, en prenant le signe inférieur, on trouve la vitesse \(v \) négative. En général \(\theta \) et \(\varphi_1 \) ne sont pas tous deux indépendants l'un de l'autre; savoir, pour \(\theta < \frac{\pi}{2} \) il est nécessaire que l'on ait \(\frac{c_s \varphi_1}{\sqrt{1 - e^2 \sin^2 \varphi}} \geq c_\theta \), et pour \(\theta > \frac{\pi}{2} \) on doit avoir \(\frac{c_s^2 \varphi_1}{\sqrt{1 - e^2 \sin^2 \varphi}} \geq c_\theta \); autrement on n'aurait qu'un seul mouvement dans le second cas, et aucun mouvement dans le premier.

Si l'on a \(\theta < \frac{\pi}{2} \), la valeur de \(A \) est toujours positive et plus grande que \(\omega \).

En cas de \(\theta > \frac{\pi}{2} \), \(A \) est positif et moindre que \(\omega \), si la valeur absolue du terme \(\frac{v}{a_0} \) \(c_\theta \) est moins que l'unité, on \(- v c_\theta < a_0 \); si \(- v c_\theta > a_0 \), \(A \) est négatif et compris entre les limites zéro et l'infini. Enfin pour \(- v c_\theta = a_0 \), \(A \) est nul.

En ayant égard à tout ce que nous venons de dire, il suit de l'équation (IV) que, pour \(\theta < \frac{\pi}{2} \), \(\frac{dl}{dt} \) est tout le temps de mouvement une valeur positive, c. à d. le mobile passe constamment sous des méridiens plus orientaux; pour \(\theta > \frac{\pi}{2} \) et \(- v c_\theta < a_0 \), \(\frac{dl}{dt} \) sera alternativement positive et négative, en s'annulant pour \(\varphi = \varphi_2 \) qui satisfait à l'égalité \(\frac{c_s^2 \varphi_2}{1 - e^2 \sin^2 \varphi} = \frac{A}{\omega} \); pour \(\theta > \frac{\pi}{2} \) et \(- v c_\theta > a_0 \), \(\frac{dl}{dt} \) est constamment négative, c. à d. le mobile passe toujours sous des méridiens plus occidentaux; enfin quand on a \(- v c_\theta = a_0 \), \(\varphi = \frac{\pi}{2} \), \(\frac{dl}{dt} \) est toujours égale à \(- \omega \). Dans cette dernière supposition le mouvement absolu du mobile se fait toujours dans le même plan méridien fixe, dans le cas actuel de même que dans les précédents que nous avons traités aux §§ 2, 3, mais maintenant le mobile passe par les deux pôles.

Les deux espèces de mouvement correspondant à \(\pm \varphi_1 \) et \(\theta \) donnés, dans le cas actuel, n'ont pas la relation mutuelle que nous avons remarquée plus haut par rapport...
à deux espèces de mouvement, en discutant aux §§ 2, 3 le premier et le second cas de mouvement. Le mouvement absolu qui répond à l'une espèce de mouvement, est essentiellement différent de celui qui répond à l'autre, parce que A qui ne représente autre chose que \(\frac{dL}{dt} \) pour \(\varphi = 0 \), diffère pour l'une et pour l'autre espèce de mouvement par sa valeur et son signe. Pour avoir les deux mouvements qui ont pour toutes les valeurs de \(t \) la même \(\frac{d\varphi}{dt} \) et des valeurs de \(\frac{dL}{dt} \) qui ne diffèrent l'une de l'autre que par leurs signes, on doit prendre, pour la même \(\pm \varphi_t \), \(0' \) et \(0'' \) tels que

\[
\frac{\sqrt{1-e^{s\varphi_t^2} \cos \varphi_t \cos \varphi_t}}{\cos \varphi_t - e^{s\varphi_t^2}} = \frac{-\sqrt{1-e^{s\varphi_t^2} \cos \varphi_t \cos \varphi_t}}{\cos \varphi_t - e^{s\varphi_t^2}}
\]

Il est facile de voir que \(csb' \) qui répond à A positif, doit être compris entre \(\frac{csb}{\sqrt{1-e^{s\varphi_t^2}}} \) et \(-1 \), et \(csb'' \) qui répond à A négatif doit être compris entre \(-\frac{csb}{\sqrt{1-e^{s\varphi_t^2}}} \) et \(-1 \); en général, \(0'' \) est toujours plus grand que \(0' \).

Pour transformer les équations (XV) et (XVI) pour le cas actuel de mouvement, posons

\[
\frac{2(\omega^2 - Be^2)}{-\omega^2 - A'e^2 + (1+e^2)B + \sqrt{\omega^2 + A'e^2 + (1+e^2)B}^2 + 4(\omega^2 - Be^2)(B-A^2)} = \lambda^2
\]

Alors \(R^2 \) peut être représenté sous la forme:

\[
R^2 = (\omega^2 - Be^2) \frac{1}{\lambda^2} (sn^2 \varphi_t - sn^2 \varphi) (1 - k^2 sn^2 \varphi_t) (B-A^2)
\]

La transformation ultérieure sera différente suivant qu'a lieu l'inégalité \(\omega^2 - Be^2 > 0 \), ou l'inégalité \(\omega^2 - Be^2 < 0 \).

D'abord supposons que l'on ait \(\omega^2 - Be^2 > 0 \); et posons en outre

\[
sn \varphi = sn \varphi_t, \quad k^2 = \frac{\lambda^2 sn^2 \varphi_t}{1 + \lambda^2 sn^2 \varphi_t} = \frac{sn^2 \varphi_t (\omega^2 - Be^2)}{B-A^2 (\omega^2 - Be^2) + 2 \omega^2 - Be^2}
\]

\(R^2 \) se réduit dans ce cas à la forme:

\[
R^2 = \frac{\omega^2 - Be^2}{k^2} sn^2 \varphi_t sn^2 \varphi_t (1 - k^2 sn^2 \varphi_t)
\]

Après avoir remplacé, dans les équations (XV) et (XVI), \(R^2 \) par sa valeur que nous venons d'obtenir, il viendra
\[t - t_0 = \frac{k}{sn^2 \tau_t (1 - e^2 sn^2 \tau_t)} \sqrt{\frac{1 - e^2}{\omega^2 - Be^2}} \int_{\psi}^{\phi} \frac{d\psi}{(1 + e^2 sn^2 \tau_t - sn^2 \psi) \sqrt{1 - k^2 sn^2 \psi}} \] (XXXVI)

\[l - t_0 = \frac{k}{sn^2 \tau_t} \sqrt{\frac{1 - e^2}{\omega^2 - Be^2}} \left\{ \frac{A}{cs^2 \tau_t} \int_{\psi}^{\phi} \frac{d\psi}{(1 + e^2 sn^2 \tau_t - sn^2 \psi) \sqrt{1 - k^2 sn^2 \psi}} \right\} . \] (XXXVII)

Quand \(\varphi \) varie de \(+ \tau \) à \(- \tau \) et inversement, \(\psi \) varie de \(0 \) à \(\pi \) et puis de \(0 \) à \(2\pi \); par conséquent, \(t \) croissant, \(\psi \) croît aussi toujours et par cela aux seconds membres des équations ci-dessus on doit prendre le seul signe \(+ \).

Supposons maintenant que \(\omega^2 - Be^2 < 0 \); \(\lambda^2 \) sera alors une quantité négative, et posons \(sn^2 \varphi \), \(\lambda^2 = - k^2 \); d'où il résulte \(k^2 = \frac{sn^2 \tau_t (Be^2 - \omega^2)}{B - A^2} \).

Puis en posant \(sn^2 \varphi = sn^2 \tau_t sn^2 \psi \), on trouve l'expression de \(R^2 \), dans ce cas, de cette forme:

\[R^2 = \frac{B e^2 - \omega^2}{k^2} sn^2 \tau_t cs^2 \psi (1 - k^2 sn^2 \psi) . \]

Ainsi les équations (XV) et (XVI) se réduisent, dans ce cas, à la forme suivante:

\[t - t_0 = sn^2 \tau_t \sqrt{\frac{1 - e^2}{B - A^2}} \int_{\psi}^{\phi} \frac{d\psi}{(1 - e^2 sn^2 \tau_t - sn^2 \psi) \sqrt{1 - k^2 sn^2 \psi}}, \] (XXXVIII)

\[l - t_0 = sn^2 \tau_t \sqrt{\frac{1 - e^2}{B - A^2}} \int_{\psi}^{\phi} \frac{d\psi}{\sqrt{1 - k^2 sn^2 \psi}} \left\{ \frac{A}{1 - sn^2 \tau_t sn^2 \psi} - \frac{\omega}{1 - e^2 sn^2 \tau_t sn^2 \psi} \right\} . \] (XXXIX)

On y prend le seul signe \(+ \) par la même cause qu'un peu plus haut. \(\psi = 0 \) a lieu ici pour \(\varphi = 0 \), \(\psi = \frac{\pi}{2} \) pour \(\varphi = - \tau \), etc.

Si l'on suppose que \(\phi_0 \) soit nul, les intégrales des équations (XXXVI), (XXXVII), (XXXVIII) et (XXXIX) sont réduites à la forme que Legendre tient pour forme normale des intégrales elliptiques de la troisième espèce.

Nouv. Mémoires. Tome XIV.

25
Enfin dans le cas particulier quand on a $Be^2 - \omega^2 = 0$, nos intégrales cessent
te d'être elliptiques.

Dans ce cas nous avons:

$$\pm \text{sn} \varphi \equiv \pm \sqrt{\frac{B-A^2}{B-A^2 e^2}}, R^2 = (B-A^2 e^2)(\text{sn}^2 \varphi \equiv -\text{sn}^2 \varphi).$$

Ainsi les équations (XV) et (XVI) peuvent se mettre maintenant sous la forme:

$$t - t_o = \pm \sqrt{\frac{1-e^2}{B-A^2 e^2}} \int_{\varphi_o}^{\varphi} \frac{d\text{sn} \varphi}{(1-e^2 \text{sn}^2 \varphi) \sqrt{\text{sn}^2 \varphi \equiv -\text{sn}^2 \varphi}};$$

$$t - t_o = \pm \sqrt{\frac{1-e^2}{B-A^2 e^2}} \int_{\varphi_o}^{\varphi} \sqrt{\text{sn}^2 \varphi \equiv -\text{sn}^2 \varphi} \left\{ \frac{A}{\text{cs}^2 \varphi} - \frac{\omega}{1-e^2 \text{sn}^2 \varphi} \right\}.$$

Puis en vertu des formules (XXXV) nous trouvons en cas de $Be^2 - \omega^2 = 0$:

$$A = \pm \frac{\omega \text{cs}^2 \varphi_o}{e \sqrt{1-e^2 \text{sn}^2 \varphi_o}}, \quad \sqrt{B-A^2 e^2} = \omega \sqrt{\frac{1-e^2}{1-e^2 \text{sn}^2 \varphi_o}};$$

$$v = \frac{a \omega}{e(1+e \cdot \text{cs} \varphi)}, \quad \frac{e+\text{cs} \varphi}{1+e \cdot \text{cs} \varphi} = \pm \frac{\text{cs} \varphi}{\sqrt{1-e^2 \text{sn}^2 \varphi_o}}.$$

Il est facile de voir que, si l'on prend une ellipse qui a $\frac{a \omega}{e}$ pour grand demi-axe, et e pour excentricité, le rayon vecteur représente la vitesse de mouvement v et l'angle que forme ce rayon vecteur avec le plus court, représente respectivement l'angle θ.

Pour déterminer les valeurs des intégrales ci-dessus, posons $\frac{d\varphi}{2} = = \pm \sqrt{\frac{\text{sn}^2 \varphi + \text{sn}^2 \varphi}{\text{sn}^2 \varphi \equiv -\text{sn}^2 \varphi}}$;

le signe $+$ a lieu quand φ croît, en passant d'une valeur négative à une valeur positive; le signe $-$ a lieu quand φ décroît. Donc lorsque φ varie de $-\varphi_1$ à $+\varphi_1$, et inversement, ψ varie de 0 à π et puis de π à 2π, c. à d. ψ croît constamment; et pour cela nous prenons plus loin le seul signe $+$.

Après avoir fait les substitutions nécessaires, quelques transformations et l'intégration, on aura

$$t - t_o = \frac{e}{\omega} \left\{ \text{arc} \text{tg} \left(\frac{tg \frac{\varphi}{2}}{\sqrt{1-e^2 \text{sn}^2 \varphi}} \right) \right\}_{\varphi_o};$$

$$t - t_o = \left\{ \pm \text{arc} \text{tg} \left(\frac{tg \frac{\varphi}{2}}{\text{cs} \varphi} \right) - e \text{arc} \text{tg} \left(\frac{tg \frac{\varphi}{2}}{\sqrt{1-e^2 \text{sn}^2 \varphi}} \right) \right\}_{\varphi_o}. $$

(XLI)
D'où il suit

\[T = \frac{2\pi e}{\omega}, \quad L_{\varphi} = 2\pi - L_{\varphi} = 2\pi(\pm 1 - e). \]

La longitude d'un tour de la courbe décrite est égale à \(\frac{2\pi a(1-e^2)}{1-e \cos \theta} \). Cette longueur peut être considérée aussi comme rayon vecteur de l'ellipse qui a la même excentricité que les méridiens de la terre, et dont le demi-axe est égal à la longueur de l'équateur.

On peut illustrer de la manière suivante le caractère de ce cas curieux : dans un point quelconque soit concentré un nombre infini de points matériels ayant chacun suivant une direction spéciale une vitesse relative \(v \) dont la valeur est liée à la direction par la formule (XL) ; ces points, après avoir commencé leur mouvement en même temps, et s'étant dispersés suivant toute la surface de l'ellipsoïde, se réuniront de nouveau en un même point de l'équateur et en même temps, ce qui se fera après chaque demi-tour, dont la durée est égale à \(\frac{\pi e}{2} \) : chaque point de passage des points mobiles par l'équateur sera éloigné du point précédent de la distance \(\pi(1-e) \) vers l'est, c. à d. de \(165^\circ 17' 67' \) pour un ellipsoïde comme la terre et de \(113^\circ 24' \) pour Jupiter.

Puisque dans ce cas on a \(L_{\varphi} = 2\pi - L_{\varphi} = \pm 2\pi \), les positions absolues de deux passages successifs par l'équateur sont diamétralement opposées.

Les intégrales des équations (XXXVI), (XXXVIII) et (XL) ont entre les limites \(\varphi = 0 \) et \(\varphi = \frac{\pi}{2} \) les mêmes valeurs qu'entre \(\varphi = \frac{\pi}{2} \) et \(\varphi = \pi \) ou \(\varphi = \pi \) et \(\varphi = \frac{3\pi}{2} \) etc ; c'est pourquoi chaque tour de la courbe, c. à d. sa partie qui corresponde à la variation de \(\varphi \) par la quantité \(2\pi \), se divise en quatre parties égales aux points qui correspondent à \(\varphi = 0, \frac{\pi}{2}, \pi, \ldots \), ou à \(\varphi = -\pi, 0, +\pi, \ldots \) ; donc chaque tour de la courbe sera divisé par l'équateur en deux parties égales. Les points d'intersection de la courbe avec l'équateur sont des points d'inflexion.

On peut voir dans les équations (XXXV) que la condition \(Be^2 - \omega^2 \geq 0 \) est équivalente à la condition \(v \leq \sqrt{a \omega \frac{1-e^2}{1+e \cos \theta}} \) ; il en résulte que la condition \(Be^2 - \omega^2 > 0 \) n'a lieu que pour des vitesses très considérables, surpassant de plusieurs fois la valeur \(a \omega \).

La vitesse étant infinie, le mouvement se passe évidemment comme si la rotation de la terre n'existait pas et que la force d'attraction de la terre était normale à sa surface, c. à d. suivant la courbe géodésique qui forme avec l'équateur l'angle \(\theta \) satisfaisant à
l'égalité \(cs\theta = \frac{\pm cs\zeta_1}{\sqrt{1 - e^2 sn^2 \zeta_1}} \). Il est évident que l'on a ici \(l_{\psi_n+2\pi} - l_{\psi_n} = L_{\psi_n+2\pi} - L_{\psi_n} \)
et que cette valeur est comprise entre \(\pm 2\pi \) et \(\pm 2\pi\sqrt{1 - e^2} \) selon la valeur de \(\theta \). La courbe géodésique donc n'est autre chose qu'un cas particulier des courbes discutées; son équation telle qu'on l'obtient de l'équation (XXXIX) pour la vitesse infinie, est de la forme

\[
 l - l_o = \pm cs\zeta_1 \sqrt{1 - e^2} \int_{\psi_n}^{\psi} \frac{d\psi}{\psi \left(1 - sn^2 \zeta_1 sn^2 \psi \right) \sqrt{1 - k^2 sn^2 \psi}},
\]
on où \(k = e sn\zeta_1 \).

Il va de soi que, en cas de \(v \) infinie, on doit supposer qu'il existe, outre la force d'attraction de la terre, une autre force normale à sa surface, qui ne permette au mobile de s'éloigner de cette dernière.

\(l_{2\pi} - l_o \) a la plus grande valeur pour \(v \) infinie. La vitesse décroissante successivement \(l_{2\pi} - l_o \) décroît aussi, en passant par \(2\pi(\pm 1 - e) \) pour \(v = \frac{c\omega(1 - e^2)}{e(1 + e cs\theta)} \); il est évident que, si \(l_{2\pi} - l_o \) est négative, elle croît en valeur absolue.

Quand on a \(\theta < \frac{\pi}{2} \) et par conséquent \(A \) constamment positif, \(l_{2\pi} - l_o \) en diminuant parvient à sa plus petite valeur (zéro) pour \(v = 0 \), parce qu'on peut voir de ce qui a été dit plus haut sur la dérivée \(\frac{dl}{dt} \), que \(l_{2\pi} - l_o \) ne devient jamais négative pour \(\theta < \frac{\pi}{2} \).

\(\theta \) étant constant et plus grand que \(\frac{\pi}{2} \), et \(A \) négatif, \(\zeta_1 \) croît, comme on l'a remarqué plus haut, lorsque \(v \) diminue; c'est pourquoi, \(v \) décroissant, \(l_{2\pi} - l_o \) en diminuant parvient à sa plus petite valeur, ou à la plus grande valeur absolue, quand \(\zeta_1 \) s'approche de \(\frac{\pi}{2} \). Si la vitesse continue à décroître, \(A \) en passant par zéro devient positif et \(l_{2\pi} - l_o \) devient discontinue, et varie de \(-2\pi \).

Quant à la valeur de \(l_{2\pi} - l_o \) pour \(\theta > \frac{\pi}{2} \) et pour \(A \) positif, elle peut être positive, ou négative suivant l'angle \(\theta \) et la vitesse \(v \); et, puisqu'elle est une fonction continue de \(\theta \) et de \(v \), excepté le cas \(\zeta_1 = \frac{\pi}{2} \), il est nécessaire que l'on ait le cas intermédiaire, \(l_{2\pi} - l_o = 0 \), quand la courbe toute entière est comprise entre deux méridiens, en ayant la figure semblable à celle du chiffre 8.
s'approchant de π et la vitesse v étant moindre que 2ω, le module k devient nul et la valeur de B s'approche de la valeur de A^2, comme on peut le voir dans les formules données plus haut, c. à d. l'on passe au second cas de mouvement traité au § 3; par conséquent, $l_{2\pi} - l_0$ doit s'approcher de l'infini négatif, qui représente ainsi le minimum de $l_{2\pi} - l_0$.

D'où il suit que le second cas de mouvement du mobile est le cas intermédiaire entre le premier et le troisième, et que nous pouvons aussi, dans le second cas de mouvement, considérer la trajectoire du mobile comme composée de deux branches, l'une dans l'hémisphère nord et l'autre dans l'hémisphère sud, situées symétriquement par rapport à l'équateur.

La durée d'un tour T peut avoir, dans le troisième cas de mouvement, toutes les valeurs possibles de 0 à ∞.

Quand $\varphi = \frac{\pi}{2}$, on a $A=0$, $B=\frac{\omega^2 t \varphi{\psi}}{1-e^2}$.

L'équation (XXXVI) se réduit, dans ce cas, à

$$t - t_0 = - \frac{\cos \theta}{\omega \sqrt{1-e^2}} \int_{\varphi_0}^{\varphi} \frac{d\psi}{(1-e^2 \sin^2 \psi) \sqrt{1-k^2 \sin^2 \psi}}, \quad (XLII)$$

où $k^2 = \frac{\cos^2 \theta - e^2}{1-e^2}$.

Dans l'équation (XXXVII) le terme qui contient le facteur A, s'annule pour $\varphi = \frac{\pi}{2}$, excepté le cas $\varphi = \pm \frac{\pi}{2}$ où il devient indéterminé. Puisque nous savons que le mobile, en passant par les pôles, change sa longitude de $\pm \pi$, on peut chasser de l'intégrale l'élément qui correspond à $\varphi=0$, π, \ldots et rend l'expression indéterminée, en changeant $l - l_0$ de $\pm \pi$ chaque fois que le mobile passe par un pôle; ainsi nous posons le facteur A constamment nul, et alors il vient

$$l - l_0 = - \frac{\cos \theta}{\sqrt{1-e^2}} \int_{\varphi_0}^{\varphi} \frac{d\psi}{(1-e^2 \sin^2 \psi) \sqrt{1-k^2 \sin^2 \psi}}, \quad (XLIII)$$

Au lieu des équations (XXXVIII) et (XXXIX) on a aussi pour $\varphi = \frac{\pi}{2}$:
\[t - t_0 = - \frac{1 - e^2}{\omega t \phi} \int_{\phi_0}^{\phi} \frac{d\phi}{\phi_0 (1 - e^2 \sin^2 \phi) \sqrt{1 - k^2 \sin^2 \phi}}, \]
(XLIV)

\[t - t_0 = \frac{1 - e^2}{t \phi} \int_{\phi_0}^{\phi} \frac{d\phi}{\phi_0 (1 - e^2 \sin^2 \phi) \sqrt{1 - k^2 \sin^2 \phi}}, \]
(XLV)

ou \(k^2 = \frac{e^2 - e^2 \theta^2}{\sin^2 \theta} \).

Mais ici on doit changer \(t - t_0 \) de \(\pm \pi \), si l'on trouve entre \(\phi_0 \) et \(\phi \) les valeurs \(\phi = \frac{\pi}{2}, \frac{3\pi}{2}, \ldots \) qui correspondent, dans ce cas, au passage par les pôles.

La formule (VIII) qui donne la pression du mobile, est un peu compliquée dans le troisième cas de mouvement: et on a seulement pour \(Be^2 - \omega^2 = 0 \) une expression très simple de la pression: \(N = g - \frac{a_0^2}{\sqrt{1 - e^2 \sin^2 \phi}} (1 - \frac{1}{e^2}) \); cette expression montre que la pression, pour \(Be^2 = \omega^2 \), est indépendante de \(\varphi \), c. à d. que tous les points matériels dont nous avons dit plus haut en disant le cas \(Be^2 = \omega^2 \), produisent la même pression \(N \); en passant par le même parallèle \(\varphi \); dans ce cas la différence entre la pression \(N \) et le poids \(g \) est, comme on peut le voir de l'expression ci-dessus, proportionnelle à la partie de la normale à la surface, comprise entre la surface et l'axe de rotation de la terre.

En faisant usage de la formule de M. Finger, que nous avons donnée dans notre introduction, on peut obtenir quelques conséquences plus générales; mais on ne doit pas oublier que la lettre \(\theta \) y a une autre signification que dans nos formules. Si l'on a \(\theta < \frac{\pi}{2} \), la pression sera constamment plus petite que le poids, pour toutes les valeurs de \(\psi \); mais si l'on a \(\theta > \frac{\pi}{2} \), la pression peut être en général plus, ou moins grande que le poids. \(A \) étant négatif, la pression varie de la même manière que pour \(A \) positif ayant la même valeur absolue.

§ 5.

En résumé, les propriétés les plus remarquables du mouvement considéré peuvent être formulées ainsi:

1. Le mouvement absolu du point matériel sur la surface de la terre sous l'action de la seule force d'attraction terrestre, en supposant que l'axe de la terre soit fixe, est une oscillation périodique qui, si le mobile reste toujours dans le même hémisphère, est de beaucoup analogue à l'oscillation du pendule conique, l'axe de la terre jouant le même rôle que celui de la position d'équilibre du pendule.
2. Le point matériel qui est en repos absolu à l'instant initial, ou qui, ce qui revient au même, a la vitesse relative égale à \(\frac{a_0 \cos \gamma}{\sqrt{1 - e^2 \sin^2 \gamma}} \) et dirigée de l'est vers l'ouest, tend au pôle le plus proche, et passe par ce pôle avec la même vitesse qu'il doit avoir pour décrire un cercle suivant l'une ou l'autre direction autour de l'axe de la terre, ou en restant en repos relatif sur la terre, ou en ayant la vitesse relative, égale à
\[
\frac{2a_0 \cos \gamma}{\sqrt{1 - e^2 \sin^2 \gamma}}
\]
et dirigée de l'est vers l'ouest. Le pendule conique n'a cette propriété que pour des angles d'écart très petits.

3. Le mouvement considéré et celui du pendule ont à peu près au même degré la propriété d'isochronisme. La durée d'une oscillation du pendule est, comme on le sait, égale à
\[
\pi \sqrt{\frac{T}{g}} \left(1 + \frac{a^2}{16} \right);
\]
la durée d'une oscillation de notre mobile, lorsqu'il ne s'écarte que peu du pôle, est égale à
\[
\frac{\pi}{2} \left(1 + \frac{a^2}{4} \right);
\]
l'une et l'autre oscillation est supposée de se passer dans un plan fixe.

4. A chaque mouvement dans l'hémisphère nord correspond le mouvement dans l'hémisphère sud qui lui est lié comme s'il en était l'image virtuelle, le plan de l'équateur étant la surface de réflexion du miroir. Le mouvement du pendule uniquement dans l'hémisphère supérieur, est, comme on le sait, tout à fait impossible.

5. La vitesse relative du mouvement considéré est constante, et le rayon de courbure de la projection de la trajectoire décrit dans le mouvement relatif sur le plan tangent à la surface de la terre en un point donné de la trajectoire, est égal à
\[
\frac{v}{2a_0 \sin \gamma}.
\]

6. En oscillant, le mobile reste toujours entre deux parallèles déterminées qui peuvent être toutes les deux du même côté de l'équateur, ou bien t'une d'elles coïncide avec l'équateur, ou, enfin, elles sont symétriquement situées des deux côtés de l'équateur. Les courbes décrites seront essentiellement différentes pour chacun de ces cas. Si la vitesse relative du mobile dépasse \(2a_0 \), le troisième cas de mouvement peut seul avoir lieu. Les variations de la latitude du mobile sont en général périodiques; mais pour le second cas de mouvement, la période est infiniment longue.

7. Dans le premier et le second cas de mouvement chaque paire de parallèles limites détermine deux courbes différentes décrites par le mobile avec la vitesse relative différente selon la courbe et avec la vitesse absolue de même grandeur; deux mouvements absolus correspondant à mouvements relatifs ne diffèrent l'un de l'autre que par la direction de la rotation du plan méridien mené par le mobile. Dans le troisième cas de mouvement, entre deux parallèles limites on peut avoir un nombre infini de courbes différant l'une de
l'autre par l'angle qu'elles font avec l'équateur; à chaque angle correspondent une ou deux courbes. De telles courbes correspondantes dont nous venons de parler en traitant le premier et le second cas, forment avec l'équateur des angles différents.

8. Les variations de longitude du mobile ont la même période que celle des variations de latitude; mais dans le premier et le second cas, la longitude géographique du mobile devient après chaque tour de plus en plus occidentale; dans le troisième cas, elle peut être après chaque tour soit plus occidentale, soit plus orientale, et, comme cas intermédiaire, nulle.

9. La durée d'un tour du mobile, dans le premier cas de mouvement, est comprise entre \(\frac{\pi}{2} \) et une valeur aussi grande que l'on veut; \(\varphi \), étant la parallèle limite supérieure, et \(\varphi_s \), l'inférieure, la durée d'un tour est comprise entre \(\frac{\pi}{2sn\varphi} \) et \(\frac{\pi}{2sn\varphi_s} \). Dans le second cas de mouvement, la durée d'un tour du mobile est infiniment grande. Enfin elle peut, dans le troisième cas, avoir toutes les valeurs comprises entre zéro et l'infini.

10. La pression du mobile, dans le premier cas, est pendant chaque tour tantôt plus grande, tantôt plus petite que son poids. Dans le second cas, la pression est moindre que le poids seulement sur une partie relativement très petite; elle est plus grande que le poids sur l'autre partie qui est infiniment grande. Dans le troisième cas, la pression peut être soit toujours moindre que le poids, soit en partie moins grande, en partie plus grande que le poids.

§ 6.

Une représentation plus claire du mouvement considéré, dans des conditions très différentes, est d'autant plus désiriable que quelquesunes des formules obtenues sont si compliquées qu'il est difficile de voir comment avec des conditions variables varie le mouvement. C'est pourquoi nous trouvons nécessaire de donner quelques exemples du mouvement dont la plupart sont dessinés sur notre planche.

1. \(\varphi = 32^\circ 23',1 \quad \varphi_s = 30^\circ 0' \quad lg \ k^2 = 2,9421012 - 10 \)

\(A \) positif \(A \) négatif \(\frac{k^2}{2} \ T = 0,00365 \)

\(v = 9''9606 \quad 793''997 \quad T = 23^h10''54',7 \)

\(l_{\varphi + \pi} - l_{\varphi} = -0^0 9',6 \quad -695^017',8 \quad \frac{\pi}{2sn\varphi} = 24^h0''0' \)

L'erreur de \(l_{\varphi + \pi} - l_{\varphi} < 0'',057 \quad < 0'',109 \quad \frac{\pi}{2sn\varphi} = 23^h10''53',6 \) (à cause de la formule)
La figure 1 représente le mouvement pour A positif; on suppose que la partie de
la terre occupée par la courbe, coïncide avec le plan tangent.

2. \(\varphi_1 = 90^\circ 0' \quad \varphi_2 = 60^\circ 0' \quad \varphi_4 = 63^\circ 31',8 \quad \frac{k^2}{2} = 4,222560 - 10 \)

\[v = 231'',948 \quad l_{\varphi + \pi} - l_{\varphi} = -13^\circ 36',2 \quad l_{\pi} - l_{\varphi} = -41^\circ 34',4 \quad \frac{k^2}{2} T = 0',0388 \]

L'erreur de \(l_{2\pi} - l_{\varphi} < 0'',58 \)

\[\frac{\tau}{2 \sin \varphi_2} = 13^h 51'' 23'' \]

La figure 2 représente la projection de la courbe décrite par le mobile sur le plan
perpendicular à l'axe de la terre.

3. \(\varphi_1 = 70^\circ 0' \quad \varphi_2 = 45^\circ 0' \quad \varphi_4 = 54^\circ 36',1 \quad \log k^2 = 5,404376 - 10 \)

\(A \) positif \(A \) négatif

\[v = 169'',399 = 487'',580 \]

\[\frac{k^2}{2} T = 0',669 \]

\[l_{\varphi + \pi} - l_{\varphi} = -10^\circ 25',2 = -428^\circ 57',2 \]

\[\frac{\tau}{2 \sin \varphi_2} = 16^h 54'' 45'' \]

L'erreur de \(l_{2\pi} - l_{\varphi} < 10'',05 \); \(< 19'',6 \)

La figure 3 représente le mouvement pour \(A \) positif, savoir la projection de la
courbe sur le plan qui forme l'angle de 30° avec le plan de l'équateur.

La figure 4 représente le mouvement pour \(A \) négatif, savoir la projection de la
courbe sur le plan parallèle au plan de l'équateur.

4. \(\varphi_1 = 90^\circ 0' \quad \varphi_2 = 45^\circ 0' \quad \log k^2 = 5,7465956 - 10 \)

\[v = 328'',489 \quad l_{\varphi + \pi} - l_{\varphi} = -32^\circ 26',0 \quad \frac{k^2}{2} T = 1',42 \]

L'erreur de \(l_{\varphi + \pi} - l_{\varphi} < 21'',28 \)

\[T = 14^h 9'' 42'' 6'' \]

La trajectoire du mobile, dans ce cas, est en général semblable à celle dessinée
sur la figure 2.

Nouv. Mémoires. Tome XIV.

26
5. \(\varphi_1 = 3^\circ 54',4 \quad \varphi_2 = 1^\circ 0' \quad \varphi_3 = 2^\circ 51',2 \)

pour \(A \) positif

\[v = 1'' \quad l_{\varphi + 2\pi} - l_\varphi = -4^\circ 33',5 \]

\[(l_{\varphi + 2\pi} - l_\varphi) = -3^\circ 6 \]

\[k = T = 1^h 47'' 44'' \]

\[T = 12^h 22'' 34'' 9'' \]

\[\frac{1}{2} \pi = 12^h 22'' 33'' 58'' \]

\(T = 13^h 7'',5 \)

La formule (XXIII), dans ce cas, n'est pas suffisante pour déterminer \(l_{\varphi + 2\pi} - l_\varphi \) parce que l'erreur de chaque terme dans les grandes parenthèses dépasse beaucoup leur différence: la limite que les erreurs ne peuvent pas dépasser, est de 54'. C'est en dessinant la courbe qu'on peut facilement reconnaître le peu d'exactitude de la valeur de \(l_{\varphi + 2\pi} - l_\varphi \); aussi pour dessiner au moins approximativement la courbe dans ce cas qui puisse montrer distinctement le changement de la figure de la courbe quand \(\varphi_1 \) et \(\varphi_3 \) s'approchent de zéro, nous avons fait usage du procédé suivant: nous augmentons et diminuons la valeur \(l_{2\pi} - l_\circ \) jusqu'à ce que, en ayant égard au rayon de courbure pour \(\varphi = \varphi_1 \) et pour \(\varphi = \varphi_3 \), et aussi à ce que la courbe et la parallèle \(\varphi_3 \) sont orthogonales, il fut évident que la valeur prise de \(l_{2\pi} - l_\circ \) est impossible; nous adoptons comme vraie la valeur moyenne des valeurs extrêmes de \(l_{2\pi} - l_\circ \), ainsi trouvées; cette valeur moyenne est désignée plus haut par \(l_{\varphi + 2\pi} - l_\varphi \).

La courbe obtenue de cette manière et représentée sur la figure 5, ne présente pas une erreur très sensible malgré la grossièreté du procédé, parce que la durée d'un tour trouvée en mesurant la longueur de la courbe avec le compas et en divisant cette longueur par la vitesse \(v \), ne diffère que très peu (3\%) de la vraie; cette durée est désignée plus haut par \(T \).

La partie de la surface de la terre occupée par les deux tours est supposée coïncidante avec le plan tangent.

6. \(\varphi_1 = 11^\circ 57',5 \quad \varphi_2 = 0^\circ 0' \quad \varphi_3 = 8^\circ 28',3 \)

\(A \) positif

\[v = 10'' \]

\[l_v = -9 - l_\varphi = -3^\circ 10',6 \quad = -440^\circ 26',0 \]

\[l_v = -3 - l_\varphi = -2^\circ 29',7 \quad = -727^\circ 22',6 \]

\[l_v = -3 - l_\varphi = -0^\circ 45',3 \quad = -1136^\circ 31',5 \]

\[l_v = -1 - l_\varphi = -7^\circ 2',1 \quad = -3543^\circ 42',3 \]

\(A \) négatif

\[v = 917'' 555 \]
La figure 6 représente le mouvement pour A positif. La différence des longitudes $l_p - l_{p_0}$ est donnée pour la partie de la courbe suivant laquelle le mobile s'approche de l'équateur. Les deux parties s'approchent rapidement de l'équateur et forment un nombre infini de points doubles dont les uns sont situés sur le même méridien que le point double dessiné sur la figure, les autres sur le méridien qui est éloigné du précédent de 180°.

7. $\varphi_1 = 90^00', \varphi_2 = 0^00'$

$\nu = a\omega = 463^{m},7776$

<table>
<thead>
<tr>
<th>φ</th>
<th>$l_p - l_{p_0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°</td>
<td>31°33'.6</td>
</tr>
<tr>
<td>50°</td>
<td>46°1'.3</td>
</tr>
<tr>
<td>30°</td>
<td>75°32'.1</td>
</tr>
<tr>
<td>15°</td>
<td>116°9'.2</td>
</tr>
<tr>
<td>10°</td>
<td>139°29'.7</td>
</tr>
<tr>
<td>5°</td>
<td>178°25'.1</td>
</tr>
<tr>
<td>2°</td>
<td>231°34'.0</td>
</tr>
<tr>
<td>1°</td>
<td>271°9'.1</td>
</tr>
<tr>
<td>0°15'</td>
<td>350°19'.2</td>
</tr>
</tbody>
</table>

l_p désigne la longitude du méridien suivant lequel le mobile est venu du pôle; l_{p_0} désigne la longitude du mobile sur la parallèle φ, le mobile s'approchant de l'équateur.

La figure 7 représente la projection sur le plan qui fait l'angle de 60° avec le plan de l'équateur; le plan des méridiens sur lesquels sont situés les points doubles, est perpendiculaire au plan de projections; le premier point double est situé dans le voisinage du tropique, le second sur la parallèle un peu supérieure à celle de 1° et sur la partie du globe qui n'est pas dessinée sur la figure, le troisième sur la parallèle inférieure à celle de 15° etc.

Le mobile, après être venu du pôle et avoir changé sa longitude de 360°, passe si près de l'équateur que l'on ne peut qu'avec peine dessiner la trajectoire du mobile sans qu'elle vienne coïncider avec l'équateur.

Avant de traiter les exemples relatifs au troisième cas de mouvement, remarquons que, pour calculer les intégrales comprises dans les équations (XXXVI), (XXXVII), (XLII) et (XLIII) entre les limites zéro et $\frac{\pi}{2}$, on peut faire usage de la formule *) et des tables **) données par Legendre.

**) Ibidem. T. II.
— 200 —

Parallèlement pour les équations (XXXVIII), (XXXIX), (XL) et (XLV), on peut faire usage de l’autre formule de Legendre *) analogue à la précédente.

En calculant, dans les exemples ci-dessous, les intégrales dont le paramètre désigné par n chez Legendre est égal à $\frac{e^{2\sin^2 \varphi}}{1-e^{2\sin^2 \varphi}}$, nous avons appliqué un procédé plus court et approximatif, à savoir: au lieu du facteur sous l’intégrale $\frac{1}{1+\frac{e^{2\sin^2 \varphi}}{1-e^{2\sin^2 \varphi}}\sin^2 \psi}$
dont la valeur, pour la variation de ψ de zéro à $\frac{\pi}{2}$ et pour la petite valeur de e^2, est comprise entre l’unité et $1-\frac{e^{2\sin^2 \varphi}}{1-e^{2\sin^2 \varphi}}$, nous avons introduit le facteur $1-\frac{e^{2\sin^2 \varphi}}{2(1-e^{2\sin^2 \varphi})}$ hors de l’intégrale; l’exacité du procédé est tout-à-fait suffisante pour notre but.

Le tableau suivant comprend quelques exemples du troisième cas de mouvement.

<table>
<thead>
<tr>
<th>φ_1</th>
<th>φ_2</th>
<th>k</th>
<th>v</th>
<th>l_a-l_0</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 178°0'</td>
<td>10°0'</td>
<td>7° 41',7</td>
<td>88°,961</td>
<td>7°,002</td>
<td>19°41',4</td>
</tr>
<tr>
<td>II 142°50'</td>
<td>10°0'</td>
<td>6°39',7</td>
<td>71°1',009</td>
<td>7°,8133</td>
<td>1°50',0</td>
</tr>
<tr>
<td>III 120°0'</td>
<td>10°0'</td>
<td>5°46',0</td>
<td>59°7',46</td>
<td>9°,357</td>
<td>-1°32',5</td>
</tr>
<tr>
<td>IV 120°0'</td>
<td>89°0'</td>
<td>79°24',3</td>
<td>30°8584</td>
<td>895°,981</td>
<td>-40°10',1</td>
</tr>
<tr>
<td>V 60°0'</td>
<td>10°0'</td>
<td>-</td>
<td>60°7',64</td>
<td>28°,658</td>
<td>-12°28',0</td>
</tr>
</tbody>
</table>

Tous les exemples sont calculés pour A positif.

Les figures 8, 9, 10 représentent les trajectoires du mobile dans les exemples I, III et V; la partie de la surface de la terre comprise entre les parallèles $+\varphi_1$ et $-\varphi_1$, a été supposée cylindrique.

VI. $\varphi_1=90^0$, $\theta=142°30'$; $k=sn 52°,353$;

\[
v = \frac{a\omega}{cs 37°30'} = 584^m,579;
\]

\[
T = 24^h 0^m 0^s \text{ de temps sidéral.}
\]

La longueur de toute la courbe $\frac{2\pi a}{cs 37°30'}$.

l_φ, désigne la longitude du méridien suivant lequel le mobile est venu d'un pôle.
l_φ désigne la longitude du mobile sur la parallèle φ quand le mobile s'éloigne du pôle.

La figure 11 représente la projection de la courbe, décrite par le mobile dans ce cas, sur le plan du méridien suivant lequel le mobile passe par les pôles.

L'angle θ doit être choisi tel que

$$\frac{c s \theta}{\sqrt{1-e^2}} \int_0^{\pi/2} \frac{d\psi}{(1+e^2 sn^2 \psi)}$$

soit égal à $\frac{\pi}{2}$; la valeur de $\theta = 142^\circ 30'$ remplit assez bien cette égalité.

Si $\gamma_1 < \frac{\pi}{2}$ et λ positif, la courbe fermée semblable à la figure 11 peut avoir lieu, en ayant égard aux exemples (II) et (III), pour θ plus petit que $142^\circ 30'$.

Si $\gamma_1 < \frac{\pi}{2}$ et λ négatif, une telle courbe ne peut avoir lieu que pour θ plus grand que $142^\circ 30'$; cependant dans ce cas on aura $l_\varphi - l_0$ non pas $= 0$, mais $= -2\pi$.

De la même manière on peut trouver θ qui remplit l'égalité

$$\frac{c s \theta}{\sqrt{1-e^2}} \int_0^{\pi/2} \frac{d\psi}{(1+e^2 sn^2 \psi)} = \frac{3\pi}{2} \text{ ou } = \frac{5\pi}{2} \ldots \text{ etc. Dans ce cas, on a aussi une courbe fermée qui n'est composée que d'un tour; mais elle a quelques points doubles, savoir 3, 5 \ldots etc. La durée d'un tour est égale ici à 3, 5 \ldots etc. jours de temps sidéral. La forme de la courbe s'approche successivement de la figure 7.}$$

Des courbes semblables peuvent avoir lieu aussi pour $\gamma_1 < \frac{\pi}{2}$.
Trajectoires d'un point matériel qui se mue sur la surface de la Terre sous l'action de la seule force d'attraction terrestre.
NOUVEAUX MéMOIRES
DE LA
SOCIÉTÉ IMPÉRIALE DES NATURALISTES
DE MOSCOU.

TOME XIV
formant le Tome XX de la collection.

Livraison 4.

Avec 1 planche et 1 cartes.

MOSCOU,
Imprimerie de l'Université Impériale.
Strastnoï Boulevard.
1883.
Ueber die gegenseitige Einwirkung permanenter Magnete.

Von

Dr. Karl Weihrauch
Professor der physik. Geographie und Meteorologie an der Universität Dorpat.

Die Frage nach der Wechselwirkung zweier permanenter Magnete aus relativ grosser Entfernung bei beliebiger gegenseitiger Lage ist wohl zuerst von Gauß 1) genauer behandelt worden. Gauß gab dann noch 2) ganz allgemeine „Vorschriften zur Berechnung der magnetischen Wirkung, welche ein Magnetstab in der Ferne ausübt“, wodurch das Problem in aller Strenge und Allgemeinheit gelöst wurde. Nach Gauß hat sich, wie es scheint, nur H. Lloyd mit derselben Frage beschäftigt 3). Es gibt zuerst eine allgemeine Ableitung der schon von Gauß gefundenen Resultate unter der ein für alle Mal festgehaltenen Voraussetzung, dass die Magnete 1 und 2, um welche es sich zunächst handelt, in der nämlichen Horizontalebene schwingen können, erweitert aber dann das Problem durch Einführung eines dritten, in derselben Horizontalebene irgendwo befindlichen Magnets, den ich den Compensationsmagnet nennen will. Der Magnet 1 befinde sich im Meridian, wie ich hier durchweg der Kurze wegen statt „im magnetischen Meridian“ sagen werde, der Magnet 2 liege normal zum Meridian; 1 und 2 mögen schwingen können, während der Magnet 3 fest sei. Lloyd bestimmt nun die Kraft, welche 2, resp. 1 und 3, auf ein magnetisches Theilchen in 1, resp. 2, ausüben, ferner die Componenten dieser Kraft normal zur Längsrichtung von 1 (2) und parallel dazu. Soll das Resultat der Einwirkung von 2 (1) und 3 auf 1 (2) Null sein, so müssen jene vier Componenten nach Lloyd verschwinden, und dadurch gewinnt er vier Gleichungen 4), welche das Fundament seiner weiteren Untersuchungen bilden. Es entsprechen Nr. 11 und 12 den Componenten normal zur Längsrichtung des betreffenden Magnets, Nr. 10

1) Resultate aus den Beobachtungen des magnetischen Vereins 1837, S. 22.
4) A. a. O. S. 167, Nr. 10, 11, 12, 13.

Nov. Mémoires. Tome XIV.
und 13 den Componenten parallel dazu. Aus später zu erörternden Gründen können diese Gleichungen nicht allgemein aufgelöst werden; Lloyd geht deshalb sofort zu einer Reihe von Spezialfällen über. Er nimmt zuerst an, dass die Centra der drei Magnete in einer Geraden liegen; bei gegebenen magnetischen Momenten bleiben dann nur 3 Unbekannte übrig: die Entfernung des Centrums 3 vom Centrum 1 [die Centrale (1, 3), wenn die Centrale (1, 2) als Einheit genommen wird], das Azimut dieser Centraleden (1, 3) und das Azimut des Magnets 3 gegen den Meridian. Lloyd bestimmt diese Grössen aus den Gleichungen Nr. 10, 11, 13 und lässt die Gleichung Nr. 12, die nichts anderes aussagt, als dass die auf den Magnet 2 ausgeübte drehende Kraft verschwinden müsse, unerfüllt. Die
delbe Bemerkung gilt von den übrigen Spezialfällen, welche Lloyd in der ersten Abhandlung untersucht. In dem Supplement verwendet er gar nur Gleichungen, welche direct aus Nr. 10 und 13 gezogen sind 1), so dass die Aufhebung der drehenden Kräfte hier für beide Magnete 1 und 2 ganz ausser Acht gelassen wird. Ich glaube daher sowohl die Lloyd'schen Spezialresultate, als auch die Winke, welche er, auf seine Untersuchungen gestützt, betreffs der Erbauung magnetischer Observatorien gibt, als unbrauchbar bezeichnen zu müssen, da mir die Einführung eines dritten, compensirenden Magnets vor allem die Aufgabe zu haben scheint, die auf die Magnete 1 und 2 ausgeübten drehenden Kräfte zu annulliren. Für den Lloyd'schen Magnet 1, ein Declinatory, ist dies an und für sich klar. Für den Magnet 2, ein Bifilar, könnten die magnetischen Drehkräfte durch Aenderung des Torsionswinkels aufgehoben werden, allein dann verliert das Bifilar eine seiner vorzüglichsten Eigenschaften, die nämlich, eine directe Vergleichung der Schwerkraft mit der erdmagnetischen Kraft zu gestatten. Ich habe den oben ausgesprochenen Gesichtspunkt zu verfolgen gesucht und gebe im Nachstehenden die Resultate meiner Untersuchung.

Die Voransetzungen, von denen ich dabei ausgehe, sind folgende:

1) Die zur Verwendung kommenden Magnete befinden sich in der nämlichen Horizontalebene.
2) Die Schwingungsaxe der beiden zu compensirenden beweglichen Magnete ist vertical.
3) Die Entfernungen der Magnete von einander sind so gross, dass man bei der Untersuchung ihrer gegenseitigen Einwirkungen nur den reciproken Werth der dritten Potenzen der Centraleden zu berücksichtigen braucht.
4) Vom Einfluss des Erdmagnetismus auf die Magnete wird ganz abgesehen.
5) Die Richtung einer Centrale werde durch den π nicht übersteigenden positiven Winkel bestimmt, den die Centrale mit der Meridianrichtung.

1) A. a. O. S. 251, Nr. 1, 4, resp. 6, 7.
Stündlich bildet, und zwar sollen die Winkel im Drehungssinne magnetisch Nord über magnetisch Ost positiv gerechnet werden.

6) Unter der Richtung eines Magnets sei immer der Winkel verstanden, den die vom Centrum des Magnets nach dessen Nordpol führende Gerade (magnetische Axe) mit dem durch das Centrum gehenden Meridian bildet. Diese Winkel bewegen sich daher innerhalb der Grenzen α und 2π, oder, was ich vorziehe, von α über $+\frac{\pi}{2}$ nach $+\pi$, und von α über $-\frac{\pi}{2}$ nach $-\pi$.

Ein Magnet a übt auf einen Magnet b ein Drehungsmoment und ein Directions-
moment aus; jenes, welches u_{ab} heissen mag, rührt her von den zur Richtung des Magnets b normalen Componenten der von den Theilchen des Magnets a auf die des Magnets b ausgeübten Kräfte; dieses, v_{ab}, entstammt den in die Richtung von b entfallenden Componenten der nämlichen Kräfte. Ein positiver (negativer) Werth des Drehungsmoments sagt aus, dass der Magnet a das Bestreben hat, den Winkel, welchen a mit dem Meridian bildet, zu vergrössern (zu verkleinern). Das Directionsmoment kann bei meiner obigen Voraussetzung 3) definiert werden als das Verhältniss der unendlich kleinen Aenderung des Drehungsmoments zu einer erfolgten unendlich kleinen Aenderung der Richtung des Magnets b, wenn diese Richtung auf die feste Richtung der Centralen (ab) bezogen wird. Man vergleiche darüber etwa Lamont 1).

In der Regel wird v_{ab} als Directionskraft bezeichnet; mir erscheint dagegen das Wort Directionsmoment passender, einmal der oben gegebenen Definition wegen, dann aber auch, weil in v_{ab} das Product von Kraftcomponenten mit Liniengrössen vorliegt. Das Directionsmoment entspricht im Gleichgewichtszustande des Magnets der Kraft, mit welcher derselbe bei erfolgender unendlich kleiner Drehung aus der Gleichgewichtslage in letztere zurückzukehren strebt; ein positiver (negativer) Werth von v_{ab} bedeutet daher stabiles (labiles) Gleichgewicht. Über die praktische Bedeutung von v kann verglichen werden Gauss a. a. Õ. und Lloyd in den citirten Abhandlungen. — Meine Untersuchung gliedert sich in 3 Theile:

A. Wirkung zweier Magnete auf einander.
 Neben längst bekannten Beziehungen findet man darin einige Resultate, die neu sein dürften.

B. Wirkung dreier Magnete auf einander.
 Die Untersuchung geht von der Bedingung aus, dass für jeden der Magnete 1 und 2 die Summe der Drehungsmomente verschwinden soll.

C. Discussion von praktisch wichtigen Specialfällen.
 Zu der in B. aufgestellten Bedingung tritt die weitere hinzu, dass auch die Summe der Directionsmomente für Magnet 1, wie für Magnet 2, verschwinden soll.

A. Wirkung zweier Magnete auf einander.

Die beiden Magnete 1 und 2 mögen die magnetischen Momente \(m_1, m_2 \), die Centra \(c_1, c_2 \) und die Richtungen \(\alpha_1, \alpha_2 \) haben; die Centrale (1, 2) sei \(e = c_1 c_2 \), ihre Richtung \(\omega \) (s. Voraussetzung 5) und 6). In den Figuren bezeichne ich den Nordpol (die positive Seite) eines Magnets immer durch die Ziffer desselben; der Meridian ist stets durch einen von magnetisch Süd nach magnetisch Nord fließenden Pfeil angegeben. In Fig. 1 seien die Winkel, welche die positiven Seiten von 1 und 2 mit der Centrale \(e \) oder deren Verlängerung bilden, durch \(\varphi_1, \varphi_2 \) bezeichnet; diese Winkel sollen von \(e \) aus nach 1 und 2 hin gerechnet werden, derart, dass die positive Drehung hier (im Gegensatz zu den \(\alpha \) und \(\omega \)) von Nord über West, Süd, Ost geht. Man hat dann nach Lamont 1)

\[
\begin{align*}
\nu_{12} &= \frac{m_1 m_2}{e^3} (2 \cos \varphi_1 \sin \varphi_2 + \sin \varphi_1 \cos \varphi_2) \\
\nu_{12} &= \frac{m_1 m_2}{e^3} (2 \cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2) \\
\nu_{21} &= \frac{m_1 m_2}{e^3} (2 \sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2) \\
\nu_{21} &= \frac{m_1 m_2}{e^3} (2 \cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2)
\end{align*}
\]

1) Man bemerkt hier sofort, der für \(v \) gegebenen Definition gemäss

\[
\nu_{12} = \frac{du_{12}}{d\varphi_2} \quad \nu_{21} = \frac{du_{21}}{d\varphi_1}
\]

und weiter

\[
\nu_{12} = \nu_{21}
\]

Während also die Drehungsmomente im Allgemeinen verschieden ausfallen, sind die Directionsmomente für beide Magnete gleich gross, worauf man meines Wissens noch nicht aufmerksam gemacht hat. Aus Fig. 1 ergiebt sich, dass das System 1) auch geschrieben werden kann

1) Handbuch des Magnetismus, S. 278, 10) und 11).
\[u_{12} = \frac{m_1 m_2}{e^3} \left(2 \cos (\omega - \alpha_1) \sin (\omega - \alpha_2) + \sin (\omega - \alpha_1) \cos (\omega - \alpha_2) \right) \]
\[u_{21} = \frac{m_1 m_2}{e^3} \left(2 \sin (\omega - \alpha_1) \cos (\omega - \alpha_2) + \cos (\omega - \alpha_1) \sin (\omega - \alpha_2) \right) \]
\[u_{12} = u_{21} = \frac{m_1 m_2}{e^3} \left(2 \cos (\omega - \alpha_1) \cos (\omega - \alpha_2) - \sin (\omega - \alpha_1) \sin (\omega - \alpha_2) \right) \]
was ich später benutze.

Soll \(u_{12} = 0 \) sein, so erhält man aus 1) die Bedingung
\[\tan \varphi_1 = -2 \tan \varphi_2 \]
5)

Hat man
\[\chi = \arctan (-2 \tan \varphi_2) \]
6)
so sind die Lösungen für 1)
\[\varphi_1 = \chi \quad \varphi_1 = \pi + \chi \]
7)

Ist also Magnet 2 in einer bestimmten Lage \(\varphi_2 \) gegeben, so bestimmen sich durch 7) zwei Lagen von Magnet 1, in welchen 1 auf 2 das Drehungsmoment Null ausübt. In Fig. 2a und 2b ist die graphische Construction dieser Lagen unter der Voraussetzung
\[\varphi_2 < \frac{\pi}{2} \]
gegeben; in allen anderen Fällen kann man analog verfahren. Es ist daselbst
\[o_1 o = \frac{1}{2} e, \quad o_2 o = \frac{3}{4} e, \quad ab \perp o_1 o_2, \quad \tan \varphi_2 = \frac{a b}{o_2 o}, \quad \tan \theta_1 a = 2 \tan \varphi_2, \quad \text{also} \quad \cos \theta_1 d = \chi, \]
\[b o c = \pi + \chi. \]

Die Directionsmomente werden, wegen
\[\sin \chi = -\frac{2 \tan \varphi_2}{1 + 4 \tan^2 \varphi_2}, \quad \cos \chi = \frac{1}{1 + 4 \tan^2 \varphi_2} \]
8)

für \(\varphi_1 = \chi \), Fig. 2a, \(v_{12} = \frac{2 m_1 m_2}{1 + 3 \sin^2 \varphi_2} \); stabiles Gleichgewicht.

für \(\varphi_1 = \pi + \chi \), Fig. 2b, \(v_{12} = -\frac{2 m_1 m_2}{1 + 3 \sin^2 \varphi} \); labiles Gleichgewicht.

Die Bedingung \(v_{12} = 0 \) führt nach 1) auf
\[\tan \varphi_1 = 2 \cot \varphi_2 \]
9)

was wieder 2 Lagen des Magnets 1 entspricht, die sich um \(\pi \) unterscheiden. Unter der Voraussetzung \(\varphi_2 < \frac{\pi}{2} \) gibt die Fig. 2c eine graphische Construction der einen, \(\varphi_1 < \frac{\pi}{2} \)

entsprechenden Lage. Es ist dort \(o a = \frac{1}{3} e, \quad ab \perp o_1 o_2, \quad \cos o_1 \perp \theta_1 b, \quad \cot \varphi_2 = \frac{a b}{o_2 o}, \quad \tan \theta_1 a = 2 \cot \varphi_2; \quad \cos \theta_1 d = \varphi_1 \).
Sollen u_{12} und u_{21} gleichzeitig verschwinden, die Magnete sich also gegenseitig nicht ablenken, so müssen die Gleichungen

$$
tg \varphi_1 = -2 \ tg \varphi_2 \quad \text{und} \quad tg \varphi_2 = -2 \ tg \varphi_1
$$

gleichzeitig erfüllt sein, d. h. es müssen φ_1 und φ_2 die Werthe o oder π, oder die Werthe $\pm \frac{\pi}{2}$ annehmen.

Ich gebe beispielsweise in Fig. 3 einige später wieder vorkommende Fälle:

Lage 1. $\varphi_1 = \varphi_2 = o$

$$
\begin{align*}
\frac{2m_1 m_2}{e^3}, \quad \text{stabil.}
\end{align*}
$$

Lage 2. $\varphi_1 = o, \varphi_2 = \pi$

$$
\frac{-2m_1 m_2}{e^3}, \quad \text{labil.}
$$

Lage 3. $\varphi_1 = \varphi_2 = \frac{\pi}{2}$

$$
\begin{align*}
v_{12} = v_{21} = \frac{-m_1 m_2}{e^3}, \quad \text{labil.}
\end{align*}
$$

Lage 4. $\varphi_1 = \frac{\pi}{2}, \varphi_2 = -\frac{\pi}{2}$

$$
\frac{m_1 m_2}{e^3}, \quad \text{stabil.}
$$

Die Untersuchung von u_{12} und v_{12} lässt sich noch etwas fortsetzen, und man gewinnt in folgender Weise eine genauere Übersicht über die Abhängigkeit jener Momente von den Richtungen der Magnete. Es mögen m_1, m_2, e, φ_1 als Constanten, u_{12}, v_{12} und φ_2 als Variablen betrachtet werden. Ich nehme (Fig. 3a) $o_1 o_2$ als Axe eines Polarkoordinatensystems, o_2 als den Ursprung, und betrachte die zu φ_2 gehörigen u_{12} und v_{12} als die der Anomalie φ_2 zukommenden Radienvectoren. Es sei

$$
\frac{m_1 m_2}{e^3} = 2A \quad u_{12} = t \quad v_{12} = \tau \quad \varphi_2 = \varphi \quad \varphi_1 = \alpha
$$

Man erhält dann die Polargleichungen

$$
\begin{align*}
t &= 2A (2 \cos \alpha \sin \varphi + \sin \alpha \cos \varphi) \\
\tau &= 2A (2 \cos \alpha \cos \varphi - \sin \alpha \sin \varphi)
\end{align*}
$$

welche durch die Substitutionen

$$
\begin{align*}
x &= t \cos \varphi & \xi &= \tau \cos \varphi \\
y &= t \sin \varphi & \gamma &= \tau \sin \varphi
\end{align*}
$$

übergehen in

$$
\begin{align*}
(x - A \sin \alpha)^2 + (y - 2A \cos \alpha)^2 &= A^2 (1 + 3 \cos^2 \alpha) \\
(\xi - 2A \cos \alpha)^2 + (\gamma + A \sin \alpha)^2 &= A^2 (1 + 3 \cos^2 \alpha)
\end{align*}
$$

Die Curven sind also Kreise; die Radienvectoren durch die Mittelpunkte derselben haben Anomalien ϕ, welche aus

$$
\begin{align*}
tg \phi_1 &= 2 \cot \alpha \\
tg \phi_2 &= -\frac{1}{2} \cot \alpha
\end{align*}
$$

11)
zu bestimmen sind. Für $\sigma = \arctan 2 \cot \alpha$ erhält man
\[\phi_1 = \sigma \quad \text{und} \quad \phi_1 = \pi + \sigma \]
\[\phi_2 = \frac{\pi}{2} + \sigma \quad \text{und} \quad \phi_2 = \frac{3\pi}{2} + \sigma \]

Man erhält also 4 Kreise mit demselben Halbmesser $A \sqrt{1 + 3 \cos^2 \alpha}$. Die Construction derselben ist sehr einfach. In Fig. 3a ist $o_1 b \perp o_1 e$, $o_1 a = \frac{1}{3} o_1 o_2$, $ab \perp o_1 o_2$; dann ist $\angle b o o_1 = \sigma$; ferner ist $qq' \perp pp'$, also $o_1 o_2 q' = \frac{\pi}{2} + \sigma$.

Das eine Kreispaar (in der Figur K_{+u} und K_{-u}) entspricht den \pm Werthen von t oder u_{12}, das andre (K_{+v} und K_{-v}) den \pm Werthen von π oder v_{12}.

Man findet leicht, dass wenn φ einmal von $-\left(\frac{\pi}{2} - \sigma\right)$ über o bis $\frac{\pi}{2} + \sigma$, dann von $\frac{\pi}{2} + \sigma$ über π bis $\frac{3\pi}{2} + \sigma$ geht, die Zeichen von t in beiden Fällen verschieden ausfallen; dasselbe geschieht bei π, wenn φ zuerst von σ über $\frac{\pi}{2}$ bis $\pi + \sigma$, dann von $\pi + \sigma$ über $\frac{3\pi}{2}$ bis σ geht.

Jeder unter beliebiger Anomalie φ von o_2 aus bis zum Schnittpunkt mit zwei der Kreise gezogene Radiusvektor stellt in den bezüglichen Sehnen die zu φ gehörigen u_{12} und v_{12} nach Grösse und Vorzeichen dar. In den Kreisen mit $+$ Index sind die Sehnen $+$, in denen mit $-$ Index dagegen $-$ zu nehmen.

Die Aufgabe, einen Magnet 3 so zu plazieren, dass zwei andre Magnete, für welche die Momente m_1, m_2, die Richtungen φ aber a_1, a_2, die Centralen (1, 3) und (2, 3) e_1, e_2 sein mögen, das Drehmomennt Null auf Magnet 3 ausüben, kann man leicht graphisch gelöst werden. Man construie mit den Radien $m_1 m_3 \sqrt{1 + 3 \cos^2 a_1}$ und $m_2 m_3 \sqrt{1 + 3 \cos^2 a_2}$ die Kreise der Drehmomennte, $K_{+u}, K_{+v}, K_{-u}, K_{-v}$. Die den Kreisen K_{+u} und K_{+v}, oder K_{-u} und K_{-v} gemeinsamen Sehnen geben dann 2 Lagen, in welchen der Magnet 3 von den beiden andern nicht gestört wird.

Aus
\[\tan \phi_1 = 2 \cot \alpha \]
folgt
\[d\phi_1 = -\frac{2}{\sin \phi} \frac{d\phi}{\sin 2\alpha} \]

d. h. bei rechtläufiger Bewegung von α (von o bis 2π in der Richtung NWSE) befindet sich ϕ in rückläufiger Bewegung. Man hat ferner (Fig. 36)
Lage 1 \[\alpha = 0 \] \[\phi_1 = \frac{\pi}{2} \] \[\phi_2 = \pi \] \[t = 4A \sin \varphi \] \[\tau = 4A \cos \varphi \]
Lage 2 \[\alpha = \frac{\pi}{2} \] \[\phi_1 = o \] \[\phi_2 = \frac{\pi}{2} \] \[t = 2A \cos \varphi \] \[\tau = -2A \sin \varphi \]
Lage 3 \[\alpha = \pi \] \[\phi_1 = -\frac{\pi}{2} \] \[\phi_2 = o \] \[t = -4A \sin \varphi \] \[\tau = -4A \cos \varphi \]
Lage 4 \[\alpha = \frac{3\pi}{2} \] \[\phi_1 = -\pi \] \[\phi_2 = -\frac{\pi}{2} \] \[t = -2A \cos \varphi \] \[\tau = 2A \sin \varphi \]

Der Mittelpunkt des Kreises \(K_{+\nu} \) liegt daher stets rückläufig gegen den des Kreises \(K_{+\nu} \) u. s. f.

Bei einer vollen rechtläufigen Drehung des Magnets 1 beschreibt das System der 4 Kreise eine volle rückläufige Drehung; die Radien \(r \) variieren dabei zwischen \(A \) und \(2A \). Führt man in \(r^2 = A^2 (1 + 3 \cos^2 \alpha) \)
\[\tan \phi_1 = 2 \cot \alpha \]
\[x = r \cos \phi_1 \quad y = r \sin \phi_1 \]
ein, so entsteht \(4 x^2 + 4 y^2 = 4 A^2 \).

Die Centra der Kreise \(K_{\pm \alpha} \) beschreiben also bei einer vollen Drehung eine Ellipse mit den Halbachsen \(A \) und \(2A \). Das nämlich findet bei den Kreisen \(K_{\pm \nu} \) statt.

Zur Anomalie \(\phi \) gehört der Radius \(\sqrt{1 + 3 \cos^2 \phi} \)

Von besonderem Interesse ist der Fall, wo der Magnet 1 die Richtung des Meridians, der Magnet 2 die darauf normale besitzt, also \(\alpha_1 = o \), \(\alpha_2 = \pm \frac{\pi}{2} \) ist. Das System 4) gibt dann
\[u_{12} = \frac{m_1 m_2}{e^3} (\pm 3 \sin ^2 \omega \mp 2) \]
\[u_{21} = \frac{m_1 m_2}{e^3} (\pm 3 \sin ^2 \omega \pm 1) \]
\[v_{12} = v_{21} = \pm \frac{3 m_1 m_2 \sin 2 \omega}{2 e^3} \]

Aus \(u_{21} = o \) erhält man die Gleichung
\[3 \sin ^2 \omega - 1 = o \]

Setzt man
\[\sin \frac{1}{\sqrt{3}} = \zeta = 35^\circ 15' 52'' \]
so gibt 22)
\[\omega = \zeta \] oder \(\omega = \pi - \zeta \)
da \(\omega \) in die Grenzen \(o \) und \(\pi \) eingeschlossen sein soll. Dabei ist angenommen, wie es auch künftig immer geschehen soll, dass der Magnet 2 östlich von dem durch den Magnet 1 gehenden Meridian liege; aus 22) folgt auch noch
\[\omega = \pi + \zeta \quad \text{und} \quad \omega = 2 \pi - \zeta \]
was westlichen Lagen des Magnets 2 entspricht. Die Fälle der westlichen Lage kann man sofort aus den östlichen Lagen erhalten, wenn man als positive Drehungsrichtung Nord über West usw. f. annimmt.

Es gibt also für den Magnet 2 vier (östliche) Lagen, in denen derselbe auf den Magnet 1 das Drehungsmoment Null ausübt): Fig. 4a gibt diese Lagen.

\[\begin{align*}
\frac{a_1}{2} + \frac{a_2}{2} = \pi & \quad \omega = 3 m_1 m_2 \sin \xi \cos \xi \text{ stabil} \\
3 & \quad \omega = \pi - \xi \quad n_{21} = -3 m_1 m_2 \sin \xi \cos \xi \text{ labil} \\
4 & \quad \omega = \pi + \xi \\
2 & \quad \omega = \pi - \xi \quad 3 m_1 m_2 \sin \xi \cos \xi \text{ labil}
\end{align*} \]

Der von Gauss zuerst eingeführte Winkel \(\xi \) spielt bei den folgenden Untersuchungen eine sehr wichtige Rolle; ich gebe deshalb hier einige Funktionen desselben, welche später öfters gebraucht werden.

\[
\begin{align*}
\zeta &= 35^\circ \ 15' \ 52'' \\
\frac{\pi}{2} - \zeta &= 54^\circ \ 44' \ 8'' \\
\frac{\pi}{2} + \zeta &= 125^\circ \ 15' \ 52'' \\
\frac{\pi}{2} - 2 \zeta &= 144^\circ \ 44' \ 8'' \\
\sin \zeta &= \frac{1}{\sqrt{3}} \\
\cos \zeta &= \frac{1}{\sqrt{2}} \\
\tan \zeta &= \frac{1}{2} \\
\sin 2 \zeta &= \frac{2 \sqrt{2}}{3} \\
\cos 2 \zeta &= \frac{1}{3} \\
\tan 2 \zeta &= 2 \sqrt{2} \\
\sin 3 \zeta &= \frac{5}{3 \sqrt{3}} \\
\cos 3 \zeta &= -\frac{1}{3} \\
\tan 3 \zeta &= -\frac{5}{\sqrt{2}}
\end{align*}
\]

Ich führe noch den Winkel \(\lambda \) ein, welcher durch die Gleichung

\[\lambda = \arcsin \frac{1}{3 \sqrt{3}} = 11^\circ \ 5' \ 45'' \]

bestimmt wird. Die geometrische Construction von \(\xi \) und \(\lambda \) ist sehr einfach. In Fig. 4b

ist \(bc = 2 \, ab \), \(bd \perp ac \), \(\varnothing \) ade = \(\frac{\pi}{2} \), \(ae = 3 \, ad \); man hat dann

\[\varnothing \, adb = \zeta \quad \varnothing \, aeb = \lambda \]

1) Gauss, a. a. O. S. 25.
Des späteren Gebrauchs wegen mögen noch einige Formeln folgen.

\[
\begin{align*}
\frac{\zeta + \lambda}{2} &= 23^\circ 10' 49'' \\
\frac{\zeta - \lambda}{2} &= 12^\circ 5' 3'' \\
\sin (\zeta \pm \lambda) &= \frac{\sqrt{26} \pm \sqrt{2}}{9} \\
\sin \frac{\zeta + \lambda}{2} &= \frac{\sqrt{5 - \sqrt{13}}}{3} \\
\cos (\zeta \pm \lambda) &= \frac{2 \sqrt{13} \mp 1}{9} \\
\sin \frac{\zeta - \lambda}{2} &= \frac{\sqrt{4 - \sqrt{13}}}{3} \\
\cos \frac{\zeta + \lambda}{2} &= \frac{\sqrt{4 + \sqrt{13}}}{3} \\
\sin 3 \frac{\zeta - \lambda}{2} &= \sqrt{\frac{11 + \sqrt{13}}{27}} \\
\cos \frac{3 \zeta + \lambda}{2} &= \sqrt{\frac{11 - \sqrt{13}}{27}}
\end{align*}
\]
B. Wirkung dreier Magnete auf einander.

Es seien drei Magnete mit den Momenten \(m_1, m_2, m_3 \) und den Richtungen \(\alpha_1, \alpha_2, \alpha_3 \) gegeben (Fig. 5); die Centralen seien \(o_1 o_2 = e_3, \) \(o_2 o_3 = e_1, \) \(o_3 o_1 = e_2, \) die Richtungen dieser Geraden \(\omega_3, \omega_1, \omega_2. \) Gemäß den Gleichungen 4) des vorigen Abschnitts erhält man dann folgendes System für die Drehungs- und DirectionsMomente:

\[
\begin{align*}
u_{12} &= \frac{m_1 m_2}{e_3^3} \left(2 \cos (\omega_3 - \alpha_1) \sin (\omega_3 - \alpha_2) + \sin (\omega_3 - \alpha_1) \cos (\omega_3 - \alpha_2) \right) \\
u_{21} &= \frac{m_1 m_2}{e_3^3} \left(2 \cos (\omega_3 - \alpha_2) \sin (\omega_3 - \alpha_1) + \sin (\omega_3 - \alpha_2) \cos (\omega_3 - \alpha_1) \right) \\
u_{13} &= \frac{m_1 m_3}{e_2^3} \left(2 \cos (\omega_2 - \alpha_1) \sin (\omega_2 - \alpha_3) + \sin (\omega_2 - \alpha_1) \cos (\omega_2 - \alpha_3) \right) \\
u_{31} &= \frac{m_1 m_3}{e_2^3} \left(2 \cos (\omega_2 - \alpha_3) \sin (\omega_2 - \alpha_1) + \sin (\omega_2 - \alpha_3) \cos (\omega_2 - \alpha_1) \right) \\
u_{23} &= \frac{m_2 m_3}{e_1^3} \left(2 \cos (\omega_1 - \alpha_2) \sin (\omega_1 - \alpha_3) + \sin (\omega_1 - \alpha_2) \cos (\omega_1 - \alpha_3) \right) \\
u_{32} &= \frac{m_2 m_3}{e_1^3} \left(2 \cos (\omega_1 - \alpha_3) \sin (\omega_1 - \alpha_2) + \sin (\omega_1 - \alpha_3) \cos (\omega_1 - \alpha_2) \right) \\
u_{13} &= \frac{m_1 m_3}{e_2^3} \left(2 \cos (\omega_2 - \alpha_1) \sin (\omega_2 - \alpha_3) + \sin (\omega_2 - \alpha_1) \cos (\omega_2 - \alpha_3) \right) \\
u_{31} &= \frac{m_1 m_3}{e_2^3} \left(2 \cos (\omega_2 - \alpha_3) \sin (\omega_2 - \alpha_1) + \sin (\omega_2 - \alpha_3) \cos (\omega_2 - \alpha_1) \right) \\
u_{23} &= \frac{m_2 m_3}{e_1^3} \left(2 \cos (\omega_1 - \alpha_2) \sin (\omega_1 - \alpha_3) + \sin (\omega_1 - \alpha_2) \cos (\omega_1 - \alpha_3) \right) \\
u_{32} &= \frac{m_2 m_3}{e_1^3} \left(2 \cos (\omega_1 - \alpha_3) \sin (\omega_1 - \alpha_2) + \sin (\omega_1 - \alpha_3) \cos (\omega_1 - \alpha_2) \right)
\end{align*}
\]

(20)

(30)

Ganz allgemein geht nun die Aufgabe dahin, die Gleichungen aufzulösen, welche das Verschwinden der Drehungsmomente für jeden einzelnen Magnet ausdrücken, nämlich

\[
\begin{align*}
U_1 &= u_{21} + u_{31} = 0 \\
U_2 &= u_{12} + u_{32} = 0 \\
U_3 &= u_{13} + u_{23} = 0
\end{align*}
\]

(31)

d. h. etwa die \(\omega \) als Funktionen der \(\alpha \) zu ermitteln, und dann die Werthe der DirectionsMomente für jeden Magnet zu bestimmen. In (31) müssen zu diesem Zwecke die Verhältnisse der Strecken \(e_1, e_2, e_3 \) durch die Sinus der Winkel des Dreiecks \(o_1 o_2 o_3, \)
d. h. durch die Sinus und Cosinus der \(a \) und \(\omega \) ersetzt werden; die Gleichungen 31) werden also bezüglich der letzteren vom fünften Grade, wodurch eine allgemeine Lösung des Problems ausgeschlossen ist. Man wird nur ganz spezielle Fälle behandeln können, indem man einigen Variablen derartige Werthe beilegt, dass die übrigen bestimmbar werden. Wollte man auch die Directionsmomente zum Verschwinden bringen, so kämen die Gleichungen

\[
v_{21} + v_{31} = v_{12} + v_{32} = v_{13} + v_{23} = 0
\]

oder

\[
v_{12} = v_{13} = v_{23} = 0
\]

hinzu, und man erhält so scheinbar 6 Gleichungen für die 6 Variablen; da indessen nur die Differenzen \(\omega - \alpha \) vorkommen, so ist ersichtlich, dass eine Variabele, etwa \(a_1 \), gleich Null gesetzt werden kann, wonach alle anderen Richtungen auf die des Magnets 1, und nicht wie bisher auf den Meridian zu beziehen waren; es bleiben mithin nur fünf unabhängige Variablen übrig.

Aus diesem Umstände geht hervor, dass, falls einzelnen Variablen, wie ich es immer thun werde, bestimmte Werthe beileget werden, die Directionsmomente im allgemeinen nicht mehr verschwinden können, immer unter der Voraussetzung, dass den Gleichungen 31) genügt werde. Nur wenn auch die magnetischen Momente als Variable betrachtet werden lässt sich in gewissen Fällen, auf welche ich später eingehende Auswege finden. Ich nehme nun ein für alle Mal an, es sei der dritte Magnet, der Compensationsmagnet, in der Horizontalebene nicht drehbar; dadurch fällt die Gleichung \(U_3 = 0 \) weg; meine weiteren Annahmen sollen sich immer auf die \(a \) beziehen, so dass nur die Bestimmung der \(\omega \) nöthig wird. Entsprechend dem Haupteinfluss der magnetischen Praxis, in welchem der erste Magnet für die Declination, der zweite als Bifilar für die Horizontalintensität bestimmt ist, sei fortan stets

\[
a_1 = \omega \quad a_2 = \pm \frac{\pi}{2}
\]

d. h. der Magnet 1 im Meridian, mit dem Nordende nach N. der Magnet 2 normal zum Meridian, mit dem Nordende nach E \(\left(\frac{\pi}{2} \right) \) oder nach W \(\left(-\frac{\pi}{2} \right) \) gekehrt. Die zu behandelnden Gleichungen sind dann

\[
U'_1 = \pm \frac{m_1}{e_2^3} (3 \sin^2 \omega_2 - 1) + \frac{m_2}{e_3^3} (2 \cos(\omega_2 - \omega_3) \sin \omega_2 + \sin(\omega_2 - \omega_3) \cos \omega_3) = 0
\]

\[
U'_2 = \pm \frac{m_1}{e_2^3} (3 \sin^2 \omega_2 - 2) \pm \frac{m_2}{e_3^3} (-2 \cos(\omega_2 - \omega_3) \cos \omega_2 + \sin(\omega_2 - \omega_3) \sin \omega_2) = 0
\]

\[
V_1 = v_{12} + v_{31} = m_1 \left(\pm \frac{3 m_1}{2 e_2^3} \sin \omega_2 + \frac{m_2}{e_3^3} (2 \cos(\omega_2 - \omega_3) \cos \omega_2 - \sin(\omega_2 - \omega_3) \sin \omega_2) \right)
\]

\[
V_2 = v_{12} + v_{32} = \pm m_2 \left(3 \frac{m_1}{2 e_2^3} \sin \omega_2 + \frac{m_3}{e_3^3} (2 \cos(\omega_1 - \omega_3) \sin \omega_1 + \sin(\omega_1 - \omega_3) \cos \omega_1) \right)
\]

In diesen Gleichungen correspondieren die Zeichen \(\pm \) mit denen von \(a_2 \) in 33). Man kann hier wieder die Bemerkung machen, dass die Drehung eines Magnets um \(\pi \) einem Zeichenwechsel seines Moments gleichkommt. Einer allgemeinen Behandlung sind auch die Gleichungen 34) nicht zugänglich. Schreibt man dieselben in der Form
so kommt man nur weiter, indem man etwa entweder $f_2 = o$ oder $f_4 = o$ setzt. Im ersten Falle wird zunächst ω_2 durch α_3 ausgedrückt, dann aus $f_1 = o$ der Werth von ω_3 bestimmt, und schliesslich ω_1 vermittelst der zweiten Gleichung durch eine Gleichung fünften Grades von α_3 abhängig gemacht. Ganz analog ist das Verfahren im zweiten Falle. In ähnlicher Weise habe ich alle Spezialuntersuchungen gemacht, doch zeigt es sich sehr bald, dass man praktisch verwertbare, einfache Resultate nur erhält, wenn der Grösse α_3 gewisse einfache Werthe beigelegt werden. Die magnetische Praxis (Variations-instrumente) weist darauf hin, den Compensationsmagnet in den Meridian oder normal zu
demselben zu stellen; ich habe deshalb für α_3 nur die Werthe o, π, $\pm \frac{\pi}{2}$ genommen und
hierfür die Untersuchung durchgeführt. Die Lösung des Problems erfolgt also nur unter
sehr bedeutenden Einschränkungen. Es lassen sich dann im Ganzen 8 Hauptfälle unter-
scheiden:

\begin{align*}
\text{I. } & \quad \alpha_1 = o, \quad \alpha_2 = + \frac{\pi}{2}, \quad \alpha_3 = o \\
\text{II. } & \quad \alpha_1 = o, \quad \alpha_2 = - \frac{\pi}{2}, \quad \alpha_3 = o \\
\text{I_1 } & \quad \alpha_3 = o \\
\text{I_2 } & \quad \alpha_3 = \pi \\
\text{I_3 } & \quad \alpha_3 = \frac{\pi}{2} \\
\text{I_4 } & \quad \alpha_3 = - \frac{\pi}{2}
\end{align*}

Wie sich sofort vermuten lässt, bieten die Fälle I und 2, wie 3 und 4 vieles Gemeinsame dar; ich will sie deshalb zusammenfassend untersuchen.

I. Fälle I_1, I_2, II_1, II_2

$(\alpha_2 = \pm \frac{\pi}{2}, \alpha_3 = o$ oder $\pi)$

Die Gleichungen 34) und 35) werden dann:

\begin{align*}
\text{I_1, I_2: } & \quad \frac{m_2}{c_3^3} (3 \sin^2 \omega_3 - 1) \pm \frac{3m_3}{c_2^3} \sin \omega_2 \cos \omega_2 = o \\
\text{I_3, I_4: } & \quad \frac{m_1}{c_3^3} (3 \sin^2 \omega_3 - 2) \pm \frac{m_3}{c_1^3} (3 \sin^2 \omega_1 - 2) = o
\end{align*}
\[V_1 = m_1 \left(\frac{3m_2 \sin 2 \omega_3}{2e_3^3} \pm \frac{m_3}{e_3^3} (2 - 3 \sin^2 \omega_2) \right) \]
\[V_2 = m_2 \left(\frac{3m_1 \sin 2 \omega_3}{2e_3^3} \pm \frac{3m_3 \sin 2 \omega_1}{2e_1^3} \right) \]

Das obere Zeichen entspricht 1, das untere 2.

I_1, \quad I_2.

\[- \frac{m_2}{e_3^3} (3 \sin^2 \omega_3 - 1) \pm \frac{3m_3}{e_3^3} \sin \omega_2 \cos \omega_2 = o \]
\[\frac{m_1}{e_3^3} (3 \sin^2 \omega_3 - 2) \pm \frac{m_3}{e_3^3} (3 \sin^2 \omega_3 - 2) = o \]

\[V_1 = m_1 \left(- \frac{3m_2 \sin 2 \omega_3}{2e_3^3} \pm \frac{m_3}{e_3^3} (2 - 3 \sin^2 \omega_2) \right) \]
\[V_2 = - m_2 \left(\frac{3m_1 \sin 2 \omega_3}{2e_3^3} \pm \frac{3m_3 \sin 2 \omega_1}{2e_1^3} \right) \]

Gemäß der Seite 217 erörterten Methode hat man zu setzen

entweder \[3 \sin^2 \omega_3 - 1 = o \], woraus folgt a) \[\omega_3 = \frac{\pi}{2} \]

b) \[\omega_3 = \frac{\pi}{2} + \varpi \]

oder \[3 \sin^2 \omega_3 - 2 = o \], woraus folgt c) \[\omega_3 = \frac{\pi}{2} - \varpi \]

d) \[\omega_3 = \frac{\pi}{2} + \varpi \]

Für a und b entspringt dann \[\sin \omega_2 \cos \omega_2 = o \], woraus a) \[\omega_2 = o \] folgt

\[\beta) \omega_2 = \frac{\pi}{2} \]

während für c und d erhalten wird \[3 \sin^2 \omega_1 - 2 = o \], woraus γ) \[\omega_1 = \frac{\pi}{2} + \varpi \] folgt

\[\delta) \omega_1 = \frac{\pi}{2} - \varpi \]

Im Ganzen ergeben sich hier 32 Fälle, welche sich indessen durch eine spätere Betrachtung auf 24 reduciren; je 4 Fälle lassen sich gemeinsam behandeln, so dass 6 Gruppen von Fällen entstehen.

Erste Gruppe.

I 1 a x, II 1 a x, I 2 a x, II 2 a x.

Hier ist, überall \[\omega_1 = \varpi, \quad \omega_2 = o \], so dass für \[\omega_1 \] die Gleichung resultirt

\[3 \sin^2 \omega_1 - 2 = \pm \frac{m_1 e_1^3}{m_3 e_3^3} \] (für 1, - für 2)
In Fig. 6 befindet sich der Magnet 1 in \(p \), der Magnet 2 in \(q \), so dass \(\Delta = dpq = \zeta \); der Ort für den im Fall 1 nach N, im Fall 2 nach S gekehrten Magnet 3 ist dann die Gerade \(dd' \); der Punkt \(p \) und seine Umgebung bis auf eine gewisse Entfernung sind gemäß der Voraussetzung 3) Seite 206 natürlich ausgeschlossen, was ich künftig nicht mehr besonders hervorheben werde. Man findet sehr leicht, dass bei beliebiger Lage des Magnets 3 auf \(dd' \)

\[
\begin{align*}
\epsilon_1 : \epsilon_3 &= \sin \zeta : \sin \omega_1 \\
\epsilon_2 : \epsilon_3 &= \pm \sin (\omega_1 - \zeta) : \sin \omega_1
\end{align*}
\]

je nachdem \(\omega_1 \geq \zeta \), also + auf \(\rho d \), - auf \(\rho d' \).

Dadurch geht (46) über in

\[
\sin^3 \omega_1 (3 \sin^2 \omega_1 - 2) = \pm \frac{m_1 \sin^3 \zeta}{m_3} = \pm \frac{m_1}{3 m_3} \sqrt{3} \quad 1 \quad 48
\]

Hier ist, wie überall später, eine Gleichung fünften Grades aufzulösen, was sich vermittels Näherungsmethoden sehr leicht bewerkstelligen lässt, wenn \(m_1 \) und \(m_2 \) numerisch gegeben sind.

Untersucht man die Curve

\[
y = \sin^3 x (3 \sin^2 x - 2) \quad 49
\]

für die Strecke von \(x = 0 \) bis \(x = \pi \), da sich \(\omega_1 \) zwischen diesen Grenzen befinden muss, so ergibt sich

\[
y = 0 \quad \text{für} \quad x = 0, \quad \frac{\pi}{2} - \zeta, \quad \frac{\pi}{2} + \zeta, \quad \pi
\]

Diesem Ordinatenwerth entsprechen die auszuschließenden Werthe \(m_3 = \infty \) oder \(m_1 = 0 \).

Maximum für \(x = \frac{\pi}{2} \), \(y = 1 \)

\[
\left\{ \begin{array}{l}
\arcsin \sqrt{\frac{2}{5}} = 39^\circ 13' 53'' \\
\pi - \arcsin \sqrt{\frac{2}{5}} = 140^\circ 46' 7''
\end{array} \right. , \quad y = - \frac{8}{25} \sqrt{3} \quad 50
\]

In Fig. 7 ist die von der Ziffer 1 bezeichnete Curve dargestellt; jedoch machen diese und alle späteren Curven keinen Anspruch auf Genaugkeit in der Ausführung der Zeichnung hinsichtlich der Ordinaten, da es mir genügt ein angenehmtes Bild des Verlaufs der Curven zu geben.

Falls die rechte Seite der Gleichung 48) positiv ist, erseibt man aus Curve 1 sofort, dass \(x \), d. h. \(\omega_1 \) innerhalb der Grenzen \(\frac{\pi}{2} - \zeta \) liegen muss, wenn der
Buchstab η ein für alle Mal zur Bezeichnung der Wurzeln der von mir zu untersuchen- den Gleichungen angenommen wird. Dabei muss jedoch die Bedingung erfüllt sein

$$\frac{m_1}{3m_3 \sqrt{3}} < 1 \quad \text{oder} \quad m_3 > \frac{m_1}{3 \sqrt{3}}$$

Im allgemeinen erhält man 2 Lösungen

$$\eta_1 < \frac{\pi}{2} - \zeta \quad \text{oder} \quad \eta_1 > \frac{\pi}{2} + \zeta \quad \text{oder} \quad \eta_2 < \frac{\pi}{2} + \zeta$$

derart, dass $\eta_1 + \eta_2 = \pi$.

Ich hebe solche einfachen Beziehungen der Lösungen zu einander später nicht weiter hervor.

Ist die rechte Seite in 48) negativ, so lässt die Curve 1 erkennen, dass die Lösungen den Bedingungen unterliegen

$$\eta < \frac{\pi}{2} - \zeta \quad \text{oder} \quad \eta > \frac{\pi}{2} + \zeta$$

unter der Voraussetzung

$$\frac{m}{3m_3 \sqrt{3}} < \frac{8 \sqrt{2}}{25 \sqrt{5}} \quad \text{oder} \quad m_3 > \frac{25}{24} \sqrt{\frac{5}{6}} m_1$$

Im allgemeinen gibt es dann 4 Anlösungen (reelle Wurzeln der Gleichung fünften Grades)

$$\eta_1 < \frac{39^\circ 13^\prime 53^\prime}{2} \quad \eta_3 = \frac{140^\circ 0^\prime 5^\prime}{2}$$

$$\eta_2 > \frac{39^\circ 13^\prime 53^\prime}{2} \quad \eta_4 = \frac{140^\circ 0^\prime 5^\prime}{2}$$

Zur graphischen Darstellung dieser Verhältnisse ist in Fig. 6 $pq = pq' = e_3$, $pe = eg = gf = pe' = e'g' = g'f$, qq und $g'q' \perp dd'$ konstruiert; nach den über ζ Seite 213 gemachten Erörterungen ist dann $\tilde{f}gg = gpq = \zeta$ u. s. f., also $qed = qf'd = \frac{\pi}{2} - \zeta$ und $qf'd = q'e'd = \frac{\pi}{2} + \zeta$.

Der geometrische Ort für den Compensationsmagnet 3 ist dann in den Fällen $11a\alpha$ und $11a\alpha$ (rechtse Seite von 48 +) die Strecke ef (Bedingung $m_3 > \frac{m_1}{3 \sqrt{3}}$).
in den Fällen $12\alpha x$ und $12\alpha x$ die Strecke f über d hin ins Unendliche, sowie die Strecke e über d' hin ins Unendliche, wofür ich künftigkürzer sagen werde „die Strecken fd und $e'ld$“ (Bedingung $m_3 = \frac{25}{24} \sqrt{\frac{5}{6} \cdot m_1}$). Ausgeschlossen sind, was ich später nicht mehr besonders hervorhebe, der unendlich ferne Punkt der Geraden dd'; sowie die Punkte p, e, f.

Zur Untersuchung der Directionsmonente hat man in den Fällen 1 immer ω_1 oder $\eta > \zeta$, und daher aus 39) und 41) mit Zuziehung von 47) und der Gleichung für η 48) nach leichter Umformung

$$V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2 V_2 \sin^2 (\eta - \zeta)}{\sin^2 \eta} + 2m_3 \right) \quad \pm \left\{ \begin{array}{l} 1 \\ \Pi \\ 51 \end{array} \right.$$

$$V_2 = \pm \frac{3m_2 m_3}{2e_3^3} \left(\sin 2 \eta - \sqrt{\frac{2}{3} \cdot \cos 2 \eta - \frac{V_2}{3}} \right)$$

Da $\eta - \zeta > \frac{\pi}{2} - 2 \zeta$ so ist für $IIa\alpha x$ stets $V_i > 0$

Für $II1a\alpha x$ aber $V_i \leq 0$, je nachdem 51)a

$$m_3 \geq \frac{m_2 \sin^3 (\eta - \zeta)}{\sqrt{\frac{2}{3} \sin^2 \eta}}$$

Der in V_2 auftretende Ausdruck kehrt in ähnlicher Gestalt später oft wieder. Ich gebe deshalb hier eine Zusammenstellung der verschiedenen Fälle, wobei man sich erinnern muss, dass η, entsprechend ω_1 stets die Grenzen 0 und π hat.

$$\sin 2 \eta + \sqrt{\frac{2}{3}} \cos 2 \eta + \frac{V_2}{3} = 0 \text{ für } \eta = 2 \zeta \text{ oder } \eta = \pi - \zeta$$

$$\sin 2 \eta + \sqrt{\frac{2}{3}} \cos 2 \eta - \frac{V_2}{3} = 0 \text{ für } \eta = \frac{\pi}{2} - \zeta \text{ oder } \eta = \frac{\pi}{2} + 2 \zeta$$

$$\sin 2 \eta - \sqrt{\frac{2}{3}} \cos 2 \eta + \frac{V_2}{3} = 0 \text{ für } \eta = \frac{\pi}{2} - 2 \zeta \text{ oder } \eta = \frac{\pi}{2} + \zeta$$

Man erhält nun

$$\sin 2 \eta - \sqrt{\frac{2}{3}} \cos 2 \eta - \frac{V_2}{3} = \left\{ \begin{array}{l} \frac{2V_2}{3} \text{ für } \eta = \frac{\pi}{2} - \zeta \\ 0 \text{ für } \eta = \pi - 2 \zeta \\ -\frac{2V_2}{3} \text{ für } \eta = \frac{\pi}{2} + \zeta \end{array} \right.$$

53)
Hier, wie überall später, ist vorstehender Nullwerth der einzige des Ausdrucks im ganzen Gebiet von \(\gamma \), d. h.

für \(I \alpha \alpha \) \[V_2 \begin{cases} > & o, \text{ je nachdem } \gamma > \pi - 2 \zeta \\ < & o, \text{ je nachdem } \gamma < \pi - 2 \zeta \end{cases} \]

für \(II \alpha \alpha \) \[V_2 \begin{cases} > & o, \text{ je nachdem } \gamma > \pi - 2 \zeta \\ < & o, \text{ je nachdem } \gamma < \pi - 2 \zeta \end{cases} \] 54)

In Fig. 6 ist \(gh = hf = g'h' = h'f' \) gemacht; für \(qg = 1 \) wird \(pg = V \sqrt{2} \), \(h g = \frac{V \sqrt{2}}{4} \), \(q g : h g = 4 : V \sqrt{2} = t g 2 \zeta \), also \(q h q = q'h'q' = 2 \zeta \), \(dh q = d'h'q' = \pi - 2 \zeta \).

Es ist daher für \(I \alpha \alpha \) \(V_2 \begin{cases} > & o \text{ auf } eh \\ < & o \text{ auf } hf \end{cases} \) 55

und für \(II \alpha \alpha \) \(V_2 \begin{cases} > & o \text{ auf } hf \\ < & o \text{ auf } eh \end{cases} \)

Für die Fälle 2 hat man aus 39) und 41) mit Zuziehung von 47)

für die Strecke \(pd \) \[V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2 V \sqrt{2} \sin^3 (\gamma - \zeta)}{\sin^3 \gamma} - 2 m_3 \right) \begin{cases} I \\ II \end{cases} \]

für die Strecke \(d'p \) \[V_1 = \frac{m_1}{e_2^3} \left(\mp \frac{m_2 V \sqrt{2} \sin^3 (\gamma - \zeta)}{\sin^3 \gamma} - 2 m_3 \right) \begin{cases} I \\ II \end{cases} \] 56)

Auf \(pd \) ist überall \(\gamma > \zeta \),

also im Falle \(I 2 \alpha \alpha \) \[V_1 \begin{cases} > & o, \text{ je nachdem } m_3 > \frac{m_2 \sin^3 (\gamma - \zeta)}{V \sqrt{2} \sin^3 \gamma} \end{cases} \]

im Falle \(II 2 \alpha \alpha \) \[V_1 < o \]

Auf \(pd' \) ist \(\gamma < \zeta \),

also im Falle \(I 2 \alpha \alpha \) \[V_1 \begin{cases} < & o, \text{ je nachdem } m_3 < \frac{m_2 \sin^3 (\gamma - \zeta)}{V \sqrt{2} \sin^3 \gamma} \end{cases} \] 57)

und im Falle \(II 2 \alpha \alpha \) \[V_1 < o \]

Man erhält weiter

\[V_2 = \mp \frac{3 m_2 m_3}{2 e_2^3} \left(\sin 2 \gamma - V \sqrt{2} \cos 2 \gamma - \frac{V \sqrt{2}}{3} \right) \begin{cases} I \\ II \end{cases} \] 59)
\[
\sin 2 \eta = \frac{1}{2} \cos 2 \eta - \frac{3}{5}\]

\[
\begin{cases}
\begin{align*}
-\frac{4 \sqrt{2}}{3} & \text{ für } \eta = 0 \\
\frac{2 \sqrt{2}}{3} & \text{ für } \eta = \frac{\pi}{2} - \xi \\
-\frac{4 \sqrt{2}}{3} & \text{ für } \eta = \frac{\pi}{2} + \xi \\
\frac{2 \sqrt{2}}{3} & \text{ für } \eta = \pi
\end{align*}
\end{cases}
\]

Man hat daher im Falle I 2 a a \(V_2 > o \) auf \(d'p \) und \(fd \)
\[
< o \text{ auf } pe
\]
im Falle II 2 a a \(V_2 > o \) auf \(pe \)
\[
< o \text{ auf } d'p \text{ und } fd
\]

\(V_2 \) wird Null in \(p \), was natürlich ausgeschlossen ist.

Zweite Gruppe.

I 1 b a, II 1 b a, I 2 b a, II 2 b a.

Man erhält hier, wegen \(\omega_3 = \pi - \xi, \omega_2 = o \), dieselbe Gleichung für \(\omega_1 \), wie in
46), nämlich
\[
3 \sin^2 \omega_1 - 2 = \pm \frac{m_1 e_1^3}{m_2 e_2^3} \quad \pm \left\lfloor \frac{1}{2} \right\rfloor
\]

In Fig. 6 ist die betreffende Lage dargestellt; der Magnet 2 befindet sich in \(q' \), so dass \(d'p = \pi - \xi \); die Gerade \(d'd \) ist dann wieder der Ort für den Magnet 3, und man findet
\[
e_1 : e_3 = \sin \xi : \sin \omega_1
\]
\[
e_2 : e_3 = \pm \sin (\omega_1 + \xi) : \sin \omega_1,
\]
jedoch \(\omega_1 \leq \pi - \xi \), also plus auf \(d'p \), minus auf \(pd \). Die Gleichung 62) wird dann, in voller Übereinstimmung mit 48)
\[
\sin^3 \omega_1 (3 \sin^2 \omega_1 - 2) = \pm \frac{m_1}{3 m_2 \sqrt{3}} \quad \pm \left\lfloor \frac{1}{2} \right\rfloor
\]

Für die Fälle 1 ergeben sich dann (Curve 1) ganz analog dem früheren im allgemeinen 2 Lösungen
\[
\begin{align*}
\eta_1 & \geq \frac{\pi}{2} - \xi \\
\eta_2 & \leq \frac{\pi}{2}
\end{align*}
\]
\[
\eta_1 = \frac{\pi}{2} \quad \eta_2 \leq \frac{\pi}{2} + \xi
\]

unter der Bedingung
\[
m_3 \geq \frac{m_1}{3 \sqrt{3}}
\]

29.
Für die Fälle 2 gibt es wieder 4 Lösungen

\[\begin{align*}
\gamma_1 & > \frac{\pi}{2} + \zeta \\
\gamma_2 & < \frac{\pi}{2} - \zeta \\
\gamma_3 & < 140^\circ 46^\prime 7^\prime \\
\gamma_4 & < 140^\circ 46^\prime 7^\prime
\end{align*} \]

unter der Bedingung

\[m_3 \geq \frac{25}{24} \sqrt{\frac{5}{6}} \cdot m_1 \]

Der geometrische Ort für den Compensationsmagnet 3 ist dann in den Fällen I 1 b a und II 1 b a die Strecke e'f' in Fig. 6 (Bedingung \(m_3 \geq \frac{m_1}{3 \sqrt{3}} \)), dagegen in den Fällen I 2 b a und II 2 b a auf den Strecken d'e' und e'd.

In den Fällen 1 ist stets \(\gamma < \pi - \zeta \); aus (39), (41), (63) und (64) findet man daher

\[\begin{align*}
V_1 &= \frac{m_1}{e_2^3} \left(-\frac{m_2 V}{2} \sin^2 (\gamma + \zeta) + 2 m_3 \right) \quad \pm \{ \text{I} \} \\
V_2 &= \pm \frac{3 m_2 m_3}{2 e_2^3} \left(\sin 2\gamma + \frac{V}{2} \cos 2\gamma + \frac{V^2}{3} \right) \quad \pm \{ \text{II} \}
\end{align*} \] (65)

Daher wird bei I 1 b a \(V_1 \leq o \), je nachdem \(m_3 \geq m_2 \sin^2 (\gamma + \zeta) \) \(\text{66} \)
bei II 1 b a \(V_1 > o \).

Ferner ist

\[\sin 2\gamma + \frac{V}{2} \cos 2\gamma + \frac{V^2}{3} = \begin{cases}
\frac{2 V}{3} & \text{für } \gamma = \frac{\pi}{2} - \zeta \\
0 & \text{für } \gamma = 2\zeta \\
-\frac{2 V}{3} & \text{für } \gamma = \frac{\pi}{2} + \zeta
\end{cases} \] (67)

und man erhält

\[\begin{align*}
&\text{für I 1 b a } V_2 \leq o, \text{ je nachdem } \gamma \leq 2\zeta \\
&\text{für II 1 b a } V_2 \geq o, \text{ je nachdem } \gamma \geq 2\zeta
\end{align*} \] (68)

oder

\[\begin{align*}
&\text{für I 1 b a } V_2 \begin{cases} > o \text{ auf } f'h' \\
= o \text{ im Punkt } k' \\
< o \text{ auf } h'c'
\end{cases} \quad \text{69} \\
&\text{für II 1 b a } V_2 \begin{cases} > o \text{ auf } h'c' \\
= o \text{ im Punkt } k' \\
< o \text{ auf } f'h'
\end{cases}
\end{align*} \]
Für die Fälle 2 erhält man aus denselben Gleichungen wie oben

für die Strecke \(d'p \), wo \(\eta < \pi - \xi \),
\[
V_1 = \frac{m_1}{\epsilon_3^2} \left(\pm \frac{m_2 \sqrt{2}}{\sin^3 \eta} \cdot \sin^3 (\gamma + \xi) - 2m_3 \right) \pm \left\{ \begin{array}{c} \text{I} \\ \text{II} \end{array} \right.
\]

für die Strecke \(pd \), wo \(\eta > \pi - \xi \),
\[
V_1 = \frac{m_1}{\epsilon_3^2} \left(\pm \frac{m_2 \sqrt{2}}{\sin^3 \eta} \cdot \sin^3 (\gamma + \xi) - 2m_3 \right) \pm \left\{ \begin{array}{c} \text{I} \\ \text{II} \end{array} \right.
\]

Auf \(d'p \) ist daher für \(1 \ 2 \ b \alpha \) \(V_1 < 0 \)

für \(2 \ b \alpha \) \(V_1 \geq 0 \), je nachdem \(m_3 \leq \frac{m_2 \sin^3 (\gamma + \xi)}{\sqrt{2} \sin^3 \eta} \)

Auf \(pd \) dagegen für \(1 \ 2 \ b \alpha \) \(V_1 < 0 \)

für \(2 \ b \alpha \) \(V_1 \geq 0 \), je nachdem \(m_3 \leq -\frac{m_2 \sin^3 (\gamma + \xi)}{\sqrt{2} \sin^3 \eta} \)

Man erhält weiter in den Fällen 2
\[
V_2 = \mp \frac{3m_2 m_3}{2 \epsilon_3^3} \left(\sin 2\eta + \sqrt{2} \cos 2\eta + \frac{\sqrt{2}}{3} \right) \pm \left\{ \begin{array}{c} \text{I} \\ \text{II} \end{array} \right.
\]

\[
\sin 2\eta + \sqrt{2} \cos 2\eta + \frac{\sqrt{2}}{3} = \frac{4}{3} \sqrt{2} \eta = \pi \quad \quad \frac{2}{3} \sqrt{2} \quad \quad \eta = \frac{\pi}{2} - \xi \quad \quad \text{d}'p
\]

\[
- \frac{2}{3} \sqrt{2} \eta = \frac{\pi}{2} + \xi \quad \quad e'p
\]

\[
\frac{4}{3} \sqrt{2} \quad \quad \eta = \pi \quad \quad p'd
\]

Also wird im Falle \(1 \ 2 \ b \alpha \) \(V_2 > 0 \) auf \(e'p \)

\(< 0 \) auf \(d'p \) und \(pd \)

im Falle \(2 \ b \alpha \) \(V_2 > 0 \) auf \(d'p \) und \(pd \)

\(< 0 \) auf \(e'p \)

Dritte Gruppe.

I 1 \(a \beta \), II 1 \(a \beta \), I 2 \(a \beta \), II 2 \(a \beta \).

Hier ist \(\omega_3 = \zeta, \omega_2 = \frac{\pi}{2} \), so dass aus 38) und 40) resultiert
\[
3 \sin^2 \omega_1 - 2 = \pm \frac{m_1 \epsilon_3^3}{m_3 \epsilon_3^3} \pm \left\{ \begin{array}{c} 1 \\ 2 \end{array} \right.
\]
In Fig. 8 befindet sich der Magnet 1 in p, der Magnet 2 in q, so dass $k'pq = \zeta$; der Ort für den im Fall 1 nach N, im Fall 2 nach S gekehrten Magnet 3 ist die auf kk' normale Gerade dd'. Man findet

$$
e_1 : e_3 = \mp \cos \zeta : \cos \omega_i$$

und zwar — für $\omega_i > \frac{\pi}{2}$, auf der Strecke $d'y$, für $\omega_i < \frac{\pi}{2}$, auf yd 77)

$$
e_2 : e_3 = \mp \sin (\omega_i - \zeta) : \cos \omega_i$$

und zwar — für $\omega_i < \zeta$ und $\omega_i > \frac{\pi}{2}$, auf $d'p$, für $\omega_i < \frac{\pi}{2}$, auf pd.

Für die Fälle 1 wird daher $\cos^3 \omega_i (1 - 3 \cos^2 \omega_i) = \mp \frac{m_1}{m_3} \cos^3 \zeta = \mp \frac{2m_1}{3m_3} \sqrt{\frac{2}{3}}$ 78)

− für $\omega_i > \frac{\pi}{2}$, + für $\omega_i < \frac{\pi}{2}$

Die Curve $y = \cos^3 x (1 - 3 \cos^2 x)$ gibt auf der Strecke $x = 0$ bis $x = \pi$

$y = 0$ für $x = \frac{\pi}{2} - \zeta$, $\frac{\pi}{2}$, $\frac{\pi}{2} + \zeta$

Maximum für $x = \pi$, $y = 2$

und $x = \arccos \sqrt{\frac{1}{5}} = 63^\circ 26' 6''$, $y = \frac{2}{25 \sqrt{5}}$ 80)

Minimum für $x = 0$, $y = - 2$

und $x = \pi - \arcsin \sqrt{\frac{1}{5}} = 116^\circ 33' 54''$, $y = - \frac{2}{25 \sqrt{5}}$

In Fig. 9 ist diese Curve (Curve 2) dargestellt.

Da die rechte Seite in 78) für $\omega_i > \frac{\pi}{2}$ negativ ist, so erfährt man aus Curve 2, dass unter der Bedingung $\frac{2m_1}{3m_3} \sqrt{\frac{2}{3}} < \frac{2}{25 \sqrt{5}}$ oder $m_3 \geq \frac{25}{3} \sqrt{\frac{10}{3}} m_1$ im allgemeinen 2 Lösungen

$$\eta_1 > \frac{\pi}{2} \geq \frac{2}{116^\circ 33' 54''} \quad \eta_2 < \frac{\pi}{2} + \zeta$$

existieren. In Fig. 8 ist $qq' \perp dd'$, $ge = 2pg = 2fp$, so dass $\angle gge = \frac{\pi}{2} - \zeta$. Der geometrische Ort für den Magnet 3 ist also zunächst $d'e$.
Für \(\omega_1 < \frac{\pi}{2} \) ist die rechte Seite in (78) +, und man ersieht aus Curve 2, dass unter derselben Bedingung wie vorher \(m_3 > \frac{25}{3} \sqrt[3]{\frac{10}{3} m_1} \) zwei Auflösungen existiren
\[
\eta > \frac{\pi}{2} - \zeta \quad \Rightarrow \quad 630 \text{ sec} \times 6^\circ
\]
\[
\eta < \frac{\pi}{2} \quad \Rightarrow \quad 630 \text{ sec} \times \beta^\circ
\]

In Fig. 8 ist \(qfp = \zeta \), also \(Nkq = \frac{\pi}{2} - \zeta \); d. h. der Ort für den Magnet 3 wird hier \(fd \).

Für die Fälle 2 erhält man
\[
\cos^3 \omega_1 (1 - 3 \cos^2 \omega_1) = \pm \frac{2m_1}{3m_3} \sqrt[3]{\frac{2}{3}} \quad (81)
\]
+ für \(\omega_1 > \frac{\pi}{2}, \) − für \(\omega_1 < \frac{\pi}{2} \)

Für \(\omega_1 < \frac{\pi}{2} \) zeigt Curve 2, dass unter der Bedingung
\[
\frac{2m_1}{3m_3} \sqrt[3]{\frac{2}{3}} \leq 2 \text{ oder } m_3 > \frac{m_1}{3} \sqrt[3]{\frac{2}{3}}
\]

eine Lösung \(\eta > \frac{\pi}{2} + \zeta \), vorhanden ist; dies entspricht der Strecke \(eg \).

Für \(\omega_1 > \frac{\pi}{2} \) erfährt man (rechte Seite in (81) −), dass unter derselben Bedingung,
\[
\eta > 0
\]
wie vorher, auch nur eine Lösung \(\eta < \frac{\pi}{2} - \zeta \), entsprechend der Strecke \(gf \), existiert.

Die geometrischen Ortfer für den Compensationsmagnet 3 sind also in den Fällen I 1aβ, II 1aβ die Strecken \(d'e \) und \(fd \) (Bedingung \(m_3 > \frac{25}{3} \sqrt[3]{\frac{10}{3} m_1} \)). in den Fällen I 2aβ und II 2aβ die Strecke \(ef \) (Bedingung \(m_3 > \frac{m_1}{3} \sqrt[3]{\frac{2}{3}} \)).

In den Fällen 1 gewinnt man aus (39), (41), (76), (77) für die Strecke \(d'e \) wo
\[
\eta > \frac{\pi}{2} \quad V_1 = \frac{m_1}{e_2^3} \left(\mp \frac{m_2 V_2}{e^3} \sin^3 \gamma \cos^3 \eta \left(\eta - \zeta \right) - m_3 \right) \quad \pm \left\{ \begin{array}{l}
I \\
II
\end{array} \right.
\]
\[
V_2 = \pm \frac{3m_2 m_3}{2e_3^3} \left(\sin 2\gamma - V_2 \cos 2\eta - \frac{V_2}{3} \right) \quad \pm \left\{ \begin{array}{l}
I \\
II
\end{array} \right.
\]
Auf $d'e$ wird also

im Fall $I \alpha \beta \quad V_1 \leq o$, je nachdem $m_3 \leq \frac{m_2 \sqrt{2} \sin^3 (\eta - \zeta)}{\cos^3 \eta}$

im Fall $II \alpha \beta \quad V_1 < o$.

Ferner ist

$$\sin 2\eta - \sqrt{2} \cos 2\eta - \frac{\sqrt{2}}{3} = \begin{cases}
2\sqrt{2} & \eta = \frac{\pi}{2} \\
3 & 0 < \eta = \pi - 2\zeta \\
-2\sqrt{2} & \eta = \frac{\pi}{2} + \zeta
\end{cases}$$

d. h. für $I \alpha \beta \quad V_2 > 0$, je nachdem $\eta > \pi - 2\zeta$

für $II \alpha \beta \quad V_2 < 0$, je nachdem $\eta > \pi - 2\zeta$

auf $d'e$

In Fig. 8 ist $he = cg$ gemacht, also, analog früheren Entwicklungen, $hqg = 2\zeta$; im Punkte h wird dann $V_2 = o$.

Auf fd, wobelst $\eta < \frac{\pi}{2}$, hat man

$$V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2 \sqrt{2} \sin^3 (\eta - \zeta)}{\cos^3 \eta} - m_3 \right)$$

$$V_2 = \pm \frac{m_2}{e_1^3} \left[\frac{4m_1}{3 \sqrt{3} \cos^3 \eta} + \frac{3m_3 \sin 2\eta}{2} \right]$$

Mithin auf fd

im Falle $I \alpha \beta \quad V_1 \leq o$, je nachdem $m_3 \leq \frac{m_2 \sqrt{2} \sin^3 (\eta - \zeta)}{\cos^3 \eta}$

$V_2 > 0$

und im Falle $II \alpha \beta \quad V_1 < o$

$V_2 > o$

Fasst man alles zusammen, so erhält man

Fall $I \alpha \beta \quad V_1 \leq o$ auf $d'e$ und fd

$$V_2 \begin{cases} > o \text{ auf } d'h \text{ und } fd \\
= o \text{ im Punkt } h \\
< o \text{ auf } he
\end{cases}$$

Fall $II \alpha \beta \quad V_1 < o$ auf $d'e$ und fd

$$V_2 \begin{cases} > o \text{ auf } he \\
= o \text{ im Punkt } h \\
< o \text{ auf } d'h \text{ und } fd
\end{cases}$$
In den Fällen 2 sind die Strecken \(ep \left(\eta > \frac{\pi}{2} + \zeta \text{ und } \eta < \zeta \right) \) und \(pf \left(\eta > \frac{\pi}{2} \right) \) zu unterscheiden. Man erhält für die Strecke \(ep \)

\[
V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2}{2} \sqrt{2} \frac{\sin^3 (\eta - \zeta)}{\cos \eta} + m_3 \right)
\]

\(I \quad II \)

\[
V_2 = \mp \frac{3 m_2^2 m_3}{2 e_1^3} \left(\sin 2 \eta - \sqrt{2} \cos 2 \eta - \frac{\sqrt{2}}{3} \right)
\]

Für die Strecke \(pf \) entsteht \(V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2}{2} \sqrt{2} \frac{\sin^3 (\eta - \zeta)}{\cos \eta} + m_3 \right) \)

\[
V_2 = \mp \frac{3 m_2^2 m_3}{2 e_1^3} \left(\sin 2 \eta - \sqrt{2} \cos 2 \eta - \frac{\sqrt{2}}{3} \right)
\]

Man hat daher im Falle I 2 \(\alpha \beta \) \(V_1 > o \) auf \(ef \)

im Falle II 2 \(\alpha \beta \) \(V_1 > o \) auf \(ep \), je nachdem \(m_3 < \pm \frac{m_2}{2} \frac{\sqrt{2}}{2} \frac{\sin^3 (\eta - \zeta)}{\cos \eta} \)

\[
V_1 > o \text{ auf } pf; \text{ je nachdem } m_3 < \pm \frac{m_2}{2} \frac{\sqrt{2}}{2} \frac{\sin^3 (\eta - \zeta)}{\cos \eta} \]

Ferner ist

\[
\sin 2 \eta - \sqrt{2} \cos 2 \eta - \frac{\sqrt{2}}{3} = \left\{ \begin{array}{l}
\frac{2}{3} \sqrt{2} \\
\eta = \frac{\pi}{2} + \zeta \\
\eta = \zeta
\end{array} \right\} ep
\]

\[
\frac{2}{3} \sqrt{2} \\
\eta = \frac{\pi}{2} - \zeta
\]

\(pf \)

also im Falle I 2 \(\alpha \beta \) \(V_2 > o \) auf \(ep \)

\(< o \) auf \(pf \)

im Falle II 2 \(\alpha \beta \) \(V_2 > o \) auf \(pf \)

\(< o \) auf \(ep \)

Vier te Gruppe.

I 1 \(b \beta \), II 1 \(b \beta \), I 2 \(b \beta \), II 2 \(b \beta \).

Diesmal ist \(\omega_3 = \pi - \zeta, \omega_2 = \frac{\pi}{2} \). Die Gleichung 76 gilt auch hier; in Fig. 8 ist \(kpq' = \pi - \zeta \); der Magnet 2 befindet sich in \(q' \); der Ort für den Magnet 3 wird wieder \(dd' \). Man hat

Nov. Mémoires. Tome XIV.
$e_1 : e_3 = \pm \cos \zeta : \cos \omega_1$

und zwar für $\omega_1 < \frac{\pi}{2}$, auf $d'g$, — für $\omega > \frac{\pi}{2}$, auf gd

$e_2 : e_3 = \pm \sin (\omega_1 + \zeta) : \cos \omega_1$

nämlich für $\omega_1 < \frac{\pi}{2}$ und $\omega_1 > \pi - \zeta$, auf $d'p$, dagegen — für $\omega_1 > \frac{\pi}{2}$, auf pd.

Für die Fälle 1 wird daher $\cos^3 \omega_1 \quad (1 - 3 \cos^2 \omega_1) = \pm \frac{2m_1}{3m_3} \sqrt{\frac{2}{3}}$

und zwar — für $\omega_1 < \frac{\pi}{2}$, — für $\omega_1 > \frac{\pi}{2}$

Aus Curve 2 ersieht man, dass für $\omega_1 < \frac{\pi}{2}$ unter der früheren Bedingung $m_3 \geq \frac{25}{3} \sqrt{\frac{10}{3}} m_1$ im allgemeinen 2 Lösungen existiren

$\eta_1 \geq \frac{\pi}{2} - \zeta \quad \geq 63^\circ 26' 6''$

$\eta_2 \leq 63^\circ 26' 6'' \quad \eta_2 < \frac{\pi}{2}$

welche der Strecke ed' entsprechen.

Für $\omega_1 > \frac{\pi}{2}$ hat man dann unter derselben Bedingung 2 Auflösungen

$\eta_1 \geq \frac{\pi}{2} \quad \geq 116^\circ 33' 54''$

$\eta_2 \leq 116^\circ 33' 54'' \quad \eta_2 < \frac{\pi}{2} + \zeta$

entsprechend der Strecke fd.

Bei den Fällen 2 wird $\cos^3 \omega_1 \quad (1 - 3 \cos^2 \omega_1) = \pm \frac{2m_1}{3m_3} \sqrt{\frac{2}{3}}$ und zwar — für $\omega_1 < \frac{\pi}{2}$, auf $d'g$, — für $\omega_1 > \frac{\pi}{2}$, auf gd.

Die Curve 2 lehrt wieder, dass für $\omega_1 < \frac{\pi}{2}$ unter der Bedingung $m_3 \geq \frac{m_1}{3} \sqrt{\frac{2}{3}}$

eine Lösung $\eta < \frac{\pi}{2} - \zeta$ entsprechend eg, vorhanden ist, während für $\omega_1 > \frac{\pi}{2}$ unter
derselben Bedingung ebenfalls nur eine Lösung $\eta > \frac{\pi}{2} + \zeta$, entsprechend gf, existirt.
Die geometrischen Orter für den Compensationsmagnet 3 sind also in den Fällen \(\text{II} b / \beta \) und \(\text{II} \beta / \beta \) die Strecken \(d/e \) und \(f/d \) (Bedingung \(m_3 > \frac{25}{3} \sqrt[3]{10 \frac{2}{3} m_i} \)), in den Fällen \(\text{II} \beta / \beta \) und \(\text{II} 2 \beta / \beta \) die Strecke \(o/\beta \) (Bedingung \(m_3 > \frac{m_1}{3} \sqrt[3]{\frac{2}{3}} \)). Was die Directionsmonmente anlangt, erhält man aus den betreffenden Fundamentalgleichungen in den Fällen 1

für die Strecke \(d/e \), wo \(\eta < \frac{\pi}{2} \)

\[
V_1 = \frac{m_1}{e_2^3} \left(\mp \frac{m_2 \sqrt{2 \sin^3 (\eta + \xi)}}{\cos^3 \eta} - m_3 \right)
\]

\[
V_2 = \pm \frac{m_2 m_3}{2 e_1^3} \left(\sin 2 \eta + \sqrt{2} \cos 2 \eta + \frac{\sqrt{2}}{3} \right) \pm \frac{m_1}{e_2^3} \left(\mp \frac{m_2 \sqrt{2 \sin^3 (\eta + \xi)}}{\cos^3 \eta} - m_3 \right)
\]

Auf \(d/e \) wird also im Fall \(\text{II} b / \beta \) \(V_1 > 0 \)

im Fall \(\text{II} \beta / \beta \) \(V_1 < 0 \), je nachdem \(m_3 > \frac{m_2 \sqrt{2 \sin^3 (\eta + \xi)}}{\cos^3 \eta} \)

Ferner ist

\[
\sin 2 \eta + \sqrt{2} \cos 2 \eta + \frac{\sqrt{2}}{3} = \begin{cases} \frac{2 \sqrt{2}}{3} & \eta = \frac{\pi}{2} - \xi \\ \frac{2 \sqrt{2}}{3} & \eta = 2 \xi \\ \frac{2 \sqrt{2}}{3} & \eta = \frac{\pi}{2} \end{cases}
\]

d. h. für \(\text{II} 1 \beta / \beta \) \(V_2 > 0 \), je nachdem \(\eta \ll \frac{\pi}{2} \)

für \(\text{II} 1 \beta / \beta \) \(V_2 < 0 \), je nachdem \(\eta \ll \frac{\pi}{2} \)

auf \(d/e \)

Dem Werth \(\eta = 2 \xi \) entspricht der Punkt \(h \).

Auf \(f/d \) wird \(\eta > \frac{\pi}{2} \)

\[
< \frac{\pi}{2} + \xi, \text{ und man gewinnt}
\]

\[
V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2 \sqrt{2 \sin^3 (\eta + \xi)}}{\cos^3 \eta} - m_3 \right)
\]

\[
V_2 = \pm \frac{m_2 m_3}{2 e_1^3} \left(\frac{4 m_1}{3 \sqrt{3 \cos^3 \eta}} + \frac{3 m_3 \sin 2 \eta}{2} \right)
\]

Da \(\eta + \xi < \pi \) und \(\eta > \frac{\pi}{2} \), so hat man sofort auf \(f/d \)
im Falle I $1 b \beta$
\[V_1 < o \]
\[V_2 < o \]

im Falle II $1 b \beta$ aber $V_1 \geq o$, je nachdem $m_3 \geq \frac{m_2 \sqrt{2} \sin^3 (\gamma + \zeta)}{\cos^3 \gamma}$ \[101 \]
\[V_2 > o \]

Fasst man alles zusammen, so erhält man

Fall I $1 b \beta$
\[V_1 < o \text{ auf } de \text{ und } fd \]
\[V_2 \begin{cases} \geq o \text{ auf } eh \\ = o \text{ im Punkt } h \\ < o \text{ auf } dh \text{ und } fd \end{cases} \]

Fall II $1 b \beta$
\[V_1 \begin{cases} \geq o \text{ auf } de \text{ und } fd \\ < o \text{ auf } eh \end{cases} \]
\[V_2 \begin{cases} = o \text{ im Punkt } h \\ < o \text{ auf } eh \end{cases} \]

102)

Bei den Fällen 2 sind die Strecken ep (γ von o bis $\frac{\pi}{2}$, $-\zeta$ und von $\pi - \zeta$) bis π) und pf (γ von $\frac{\pi}{2} + \zeta$ bis $\pi - \zeta$) zu unterscheiden.

Für ep erhält man
\[V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2 \sqrt{2} \sin^3 (\gamma + \zeta)}{\cos^3 \gamma} + m_3 \right) \pm \begin{cases} 1 \\ II \end{cases} \]

für pf dagegen
\[V_1 = \frac{m_1}{e_2^3} \left(\pm \frac{m_2 \sqrt{2} \sin^3 (\gamma + \zeta)}{\cos^3 \gamma} + m_3 \right) \pm \begin{cases} 1 \\ II \end{cases} \]

Mithin im Fall I $2 b \beta$ auf ep
\[V_1 \begin{cases} \geq o , \text{ je nachdem } m_3 \geq \frac{m_2 \sqrt{2} \sin^3 (\gamma + \zeta)}{\cos^3 \gamma} \\ < o \end{cases} \]

auf pf
\[V_1 \begin{cases} \geq o , \text{ je nachdem } m_3 \geq \frac{m_2 \sqrt{2} \sin^3 (\gamma + \zeta)}{\cos^3 \gamma} \\ < o \end{cases} \]

und im Falle II $2 b \beta$
\[V_1 > o \text{ auf } ef \]

Für V_2 erhält man auf der ganzen Strecke ef
\[V_2 = \mp \frac{3 m_2 m_3}{2 e_1^3} \left(\sin 2 \gamma + \sqrt{2} \cos 2 \gamma + \frac{\sqrt{2} \gamma}{3} \right) \mp \begin{cases} 1 \\ II \end{cases} \]

\[\sin 2 \gamma + \sqrt{2} \cos 2 \gamma + \frac{\sqrt{2} \gamma}{3} = \begin{cases} \frac{2 \sqrt{2}}{3} & \gamma = \frac{\pi}{2} - \zeta \\ o & \gamma = \pi - \zeta \\ -\frac{2 \sqrt{2}}{3} & \gamma = \frac{\pi}{2} + \zeta \end{cases} \]

105)
Es ist also im Falle II $2b \beta$
\[V_2 \begin{cases} < o \text{ auf } ep \\ > o \text{ auf } pf \end{cases} \]

im Falle II $2b \beta$
\[V_2 \begin{cases} > o \text{ auf } ep \\ < o \text{ auf } pf \end{cases} \]

\[107 \]

Fünfte Gruppe.

\[11 c' \alpha, \ II 2 c' \alpha, \ II 2 c' \alpha, \ II 1 c' \alpha. \]

Man hat für diese Fälle $\omega_3 = \frac{\pi}{2} - \zeta, \omega_1 = \frac{\pi}{2} + \zeta$, so dass aus 38) und 40) als Gleichung für ω_2 resultiert

\[\sin 2 \omega_2 = \pm \frac{2 m_2 e_2^3}{3 m_3 e_3^3} \]

bei I1 und II2

\[108 \]

In Fig. 10 befindet sich der Magnet 1 in p, der Magnet 2 in q, so dass $qq' = \frac{\pi}{2} - \zeta$; es ist $qu \perp rr', ne = pu$, also $gq = \frac{\pi}{2} - \zeta$; der Ort für den Magnet 3 ist dann die Gerade dd'. Man findet leicht, dass

\[e_1 : e_3 = \mp \cos (\omega_2 + \zeta) : \cos (\omega_2 - \zeta) \]

nämlich für $\omega_2 > \frac{\pi}{2} - \zeta$, auf dq, aber für $\omega_2 < \frac{\pi}{2} - \zeta$ und $> \frac{\pi}{2} + \zeta$, auf qd. 109)

\[< \frac{\pi}{2} + \zeta \]

\[> o \]

\[\ll \pi \]

\[e_2 : e_3 = \pm \sin 2 \zeta \cos : (\omega_2 - \zeta) \]

nämlich für $\omega_2 < \frac{\pi}{2} + \zeta$, auf df, und für $\omega_2 > \frac{\pi}{2} + \zeta$, auf fd.

In den Fällen I1 und II2 erhält man dann aus 108)

\[\sin 2 \omega_2 \cdot \cos^3 (\omega_2 - \zeta) = \pm \frac{2 m_2 \sin^3 2 \zeta}{3 m_3} = \pm \frac{32 m_2 V_2}{81 m_3} \]

und zwar für $\omega_2 < \frac{\pi}{2} + \zeta$, für $\omega_2 > \frac{\pi}{2} + \zeta$

Die Curve

\[y = \sin 2 x \cdot \cos^3 (x - \zeta) \]

liefer

\[y = o \text{ für } x = o, \frac{\pi}{2}, \frac{\pi}{2} + \zeta, \pi \]

Die Untersuchung der Extreme führt auf die Gleichung

\[t^2 x + 4 t^2 x \cdot \sqrt{2} - 4 t x - \sqrt{2} = o \]

\[112 \]
woran

\[
x = \begin{cases}
40^\circ 50' 13'' \\
99^\circ 4' 35'' \\
165^\circ 21' 4''
\end{cases} \quad y = \begin{cases}
0 \cdot 9755 \text{ Maximum} \\
-0 \cdot 0268 \text{ Minimum} \\
0 \cdot 1307 \text{ Maximum}
\end{cases}
\]

Die Curve (Nr. 3) ist in Fig. 11 dargestellt.

Da die rechte Seite in 110) für \(\omega_2 < \frac{\pi}{2} + \zeta \) negativ ist, so lehrt der Anblick der Curve 3, dass, falls nur \(\frac{32m_2\sqrt{2}}{81m_3} \leq 0 \cdot 0268 \) oder \(m_3 \geq 20 \cdot 8619m_2 \), im allgemeinen zwei der Strecke \(d'e \) entsprechende Auflösungen vorhanden sind, nämlich

\[
\eta_1 > \frac{\pi}{2} \quad \eta_2 < \frac{\pi}{2} + \zeta
\]

Für \(\omega_2 > \frac{\pi}{2} + \zeta \) wird jene rechte Seite positiv, und die Curve zeigt, dass dann, wenn nur \(\frac{32m_2\sqrt{2}}{81m_3} \leq 0 \cdot 1307 \) oder \(m_3 \geq 4 \cdot 2760m_2 \) ebenfalls zwei, der Strecke \(fd \) angehörige Auflösungen existiren, nämlich

\[
\eta_1 > \frac{\pi}{2} + \zeta \quad \eta_2 < \pi
\]

In den Fällen I2 und II1 erhält man die Gleichung

\[
\sin 2\omega_2 \cos ^3 (\omega_2 - \zeta) = \frac{32m_2\sqrt{2}}{81m_3}
\]

913)

d. h. für \(\omega_2 < \frac{\pi}{2} + \zeta \) — für \(\omega_2 > \frac{\pi}{2} + \zeta \).

Die Curve 3 liefert für jenen Fall, wenn nur \(\frac{32m_2\sqrt{2}}{81m_3} \leq 0 \cdot 9755 \) oder \(m_3 \geq 0 \cdot 5727m_2 \), im allgemeinen 2 Auflösungen,

\[
\eta_1 \geq 40^\circ 50' 13'' \quad \eta_2 < \frac{\pi}{2}
\]

welche der Strecke \(fe \) entsprechen.

Für den negativen Werth der rechten Seite (\(\omega_2 > \frac{\pi}{2} + \zeta \)) erkennt man aus Curve 3, dass keine Lösung möglich ist.
Die geometrischen Orter für den Magnet 3 sind daher in den Fällen II\(e\) und II\(2e\) die Strecken \(de\) (Bed. \(m_3 \geq 20 \cdot 8619 m_2\)) und \(fd\) (Bed. \(m_3 \geq 4 \cdot 2760 m_2\)), in den Fällen II\(2e\) und II\(1e\) die Strecke \(ef\) (Bed. \(m_3 \leq 0 \cdot 5727 m_2\)).

Für die Directionsmomente ergibt sich in den Fällen II\(1e\) und II\(2e\):

auf der Strecke \(de\)
\[
\begin{align*}
V_1 &= \mp \frac{3m_1 m_3}{2 \epsilon^3} (V \sin 2 \eta - \cos 2 \eta - \frac{1}{3}) \\
V_2 &= \mp \frac{m_2}{\epsilon^3} \left(\frac{m_1 V^2 \cdot \cos^3 (\eta + \zeta)}{\cos^3 (\eta - \zeta)} - m_3 V^2 \right)
\end{align*}
\]

auf der Strecke \(fd\)
\[
\begin{align*}
V_1 &= \pm \frac{m_1}{\epsilon^3} \left(\frac{32 m_3}{27 \cos^3 (\eta - \zeta)} - m_3 (2 - 3 \sin^2 \eta) \right) \\
V_2 &= \pm \frac{m_2}{\epsilon^3} \left(\frac{m_1 V^2 \cdot \cos^3 (\eta + \zeta)}{\cos^3 (\eta - \zeta)} - m_3 V^2 \right)
\end{align*}
\]

Die obere Zeichen beziehen sich auf II\(1\), die unteren auf II\(2\).

Die Gleichungen \(V \sin 2 \eta \pm \cos 2 \eta \pm \frac{1}{3} = o\) führen alle auf Lösungen von der Form \(\sin 2 \eta = \pm \sqrt{\frac{V}{2} \pm \sqrt{\frac{26}{9}}}\), und mit Rücksicht auf 27) und 28) findet man:

\[
\begin{align*}
V \sin 2 \eta + \cos 2 \eta + \frac{1}{3} &= o & \Rightarrow \pi - (\zeta - \lambda) \quad \text{und} \quad 2 \pi - (\zeta + \lambda) \\
V \sin 2 \eta - \cos 2 \eta + \frac{1}{3} &= o & \Rightarrow \zeta - \lambda \quad \text{und} \quad \pi + (\zeta + \lambda) \\
V \sin 2 \eta + \cos 2 \eta - \frac{1}{3} &= o & \Rightarrow \pi - (\zeta + \lambda) \quad \text{und} \quad 2 \pi - (\zeta - \lambda) \\
V \sin 2 \eta - \cos 2 \eta - \frac{1}{3} &= o & \Rightarrow \zeta + \lambda \quad \text{und} \quad \pi + (\zeta - \lambda)
\end{align*}
\]

Es ist nun

\[
\begin{align*}
V \sin 2 \eta - \cos 2 \eta - \frac{1}{3} &= \begin{cases}
\frac{2}{3}, & \eta = \frac{\pi}{2} \\
0, & \eta = \frac{\pi}{2} + \left(\frac{\zeta - \lambda}{2} \right) \\
\frac{4}{3}, & \eta = \frac{\pi}{2} + \zeta
\end{cases}
\end{align*}
\]

Berücksichtigt man nun die Grenzen für \(\eta\) auf den Strecken \(de\) und \(fd\), und dass im letzteren Falle \(\sin \eta < \cos \zeta\), d. h. \(\eta < \sqrt{\frac{2}{3}}\) wird, so erkennt man leicht, dass
im Falle I c_1 auf $d'e$
\[V_1 \geq o, \text{ je nachdem } \eta \geq \frac{\pi}{2} + \left(\frac{\zeta - \lambda}{2} \right) \]

auf fd
\[V_1 > o \]

da gefallen + $d'e$
\[V_2 \geq o, \text{ je nachdem } m_3 \geq -\frac{m_1 \cos^3 (\eta + \zeta)}{\cos^3 (\eta - \zeta)} \]

auf fd
\[V_2 \geq o, \text{ je nachdem } m_3 \geq -\frac{m_3 \cos^3 (\eta + \zeta)}{\cos^3 (\eta - \zeta)} \]

118

dagegen im Falle II c_1 auf $d'e$
\[V_1 \geq o, \text{ je nachdem } \eta \geq \frac{\pi}{2} + \left(\frac{\zeta - \lambda}{2} \right) \]

auf fd
\[V_1 < o \]

auf $d'e$ und fd
\[V_2 < o \]

Zur graphischen Darstellung ist in Fig. 10 $qr = qr' = 3qe$ gemacht; n ist die Mitte von er, n' die Mitte von er'; $nh \perp ed$, $nh_1 \perp ec$, $nh_2 \perp ec$, $nh_1' \perp ed$.

Für $qu = 1$ wird $ue = V\frac{2}{2}$, $qe = V\frac{3}{3}$, $qr = 3V\frac{3}{3}$, also $qre = qr' e = \lambda$ (S. 213).

Ferner $ur = V\frac{2}{2}$, $er = V\frac{2}{2} - V\frac{2}{2}$, $er' = V\frac{2}{2} + V\frac{2}{2}$

\[eh = eh_1 = en \cdot \cos \zeta = \frac{V\frac{13}{3} - 1}{V\frac{3}{3}} \]

\[eh' = eh_1' = en' \cdot \cos \zeta = \frac{V\frac{13}{3} + 1}{V\frac{3}{3}} \]

\[\sin eph : \sin ehp = eh : ep = \frac{V\frac{13}{3} - 1}{V\frac{3}{3}} : 2V\frac{2}{2} = \sin \frac{\zeta - \lambda}{2} : \sin \frac{\zeta + \lambda}{2} \]

\[\sin h'pe : \sin eh'p = eh' : ep = \frac{V\frac{13}{3} + 1}{V\frac{3}{3}} : 2V\frac{2}{2} = \cos \frac{\zeta + \lambda}{2} : \cos \frac{\zeta - \lambda}{2} \]

(Formeln 18).

Da nun $\neq peh = \pi - \zeta, peh' = \zeta$, so ergibt sich

\[\neq eph = \frac{\zeta - \lambda}{2} \]

\[eph' = \frac{\pi}{2} - \frac{\zeta + \lambda}{2} \]

\[fph = \frac{\pi}{2} + \frac{\zeta - \lambda}{2} \]

\[fph' = \frac{\pi}{2} - \frac{\zeta + \lambda}{2} \]

Für den Fall I c_1 ist daher

\[V_1 \begin{cases} > o \text{ auf } d'h \text{ und } fd \\ = o \text{ im Punkt } h \\ < o \text{ auf } he \end{cases} \]

und für II c_1

\[V_1 \begin{cases} > o \text{ auf } he \\ = o \text{ im Punkt } h \\ < o \quad \text{auf } d'h \text{ und } fd. \]
Was die Directionsmomente in den Fällen I 2 \(c \vec{r} \) und II 1 \(c \vec{r} \) anlangt, erhält man für die ganze Strecke \(e f \) \(V_1 = \pm \frac{3 m_1 m_3}{2 e_1^3} \left(V_2 \sin 2 \eta - \cos 2 \eta - \frac{1}{3} \right) \)

für die Strecke \(e q \) aber \(V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 V_2 \cos^3 (\eta + \xi)}{\cos^3 (\eta - \xi)} + m_3 V_2 \right) \) \(120 \)

und für \(qf \) \(V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 V_2 \cos^3 (\eta + \xi)}{\cos^3 (\eta - \xi)} + m_3 V_2 \right) \)

Die oberen Zeichen entsprechen I 2 \(c \vec{r} \), die unteren II 1 \(c \vec{r} \).

Es ist nun \(V_2 \sin 2 \eta - \cos 2 \eta - \frac{1}{3} = \begin{cases} \frac{2}{3} & \eta = \frac{\pi}{2} \\ 0 & \eta = \frac{\xi + \lambda}{2} \\ -\frac{4}{3} & \eta = o. \end{cases} \) \(121 \)

Darum wird auf \(e f \) im Fall I 2 \(c \vec{r} \) \(V_1 \) größer oder gleich \(o \), je nachdem \(\eta \) größer oder gleich \(\frac{\xi + \lambda}{2} \) \(122 \)

im Fall II 1 \(c \vec{r} \) \(V_1 \) größer oder gleich \(o \), je nachdem \(\eta \) größer oder gleich \(\frac{\xi + \lambda}{2} \)

d. h. im Falle I 2 \(c \vec{r} \) \(V_1 \) \(\begin{cases} > o \text{ auf } e h_1' \\ = o \text{ im Punkt } h_1' \\ < o \text{ auf } h_1'f \end{cases} \) \(123 \)

und im Falle II 1 \(c \vec{r} \) \(V_1 \) \(\begin{cases} > o \text{ auf } h_1'f \\ = o \text{ im Punkt } h_1' \\ < o \text{ auf } e h_1' \end{cases} \)

Berücksichtigt man, dass \(\eta \) auf der Strecke \(e q \) zwischen \(\frac{\pi}{2} \) und \(\frac{\pi}{2} - \xi \), auf der Strecke \(q f \) zwischen \(\frac{\pi}{2} - \xi \) und \(o \) liegt, so hat man sofort

für I 2 \(c \vec{r} \) \(V_2 > o \)

für II 1 \(c \vec{r} \) auf \(e q \) \(V_2 \leq o \), je nachdem \(m_3 \) größer oder gleich \(-\frac{m_1 \cos^3 (\eta + \xi)}{\cos^3 (\eta - \xi)} \) \(124 \)

auf \(q f \) \(V_2 \leq o \), je nachdem \(m_3 \) größer oder gleich \(-\frac{m_1 \cos^3 (\eta + \xi)}{\cos^3 (\eta - \xi)} \)

Nouv. Mémoires. Tome XIV. 31
S e c h s t e G r u p p e.

Hier ist $\omega_3 = \frac{\pi}{2} + \zeta$, $\omega_1 = \frac{\pi}{2} - \zeta$, und man erhält

$$ \sin 2 \omega_2 = \frac{2 m_2 e_2^3}{3 m_3 e_3^3} $$
bei I_1, I_2

$$ + \frac{2 m_2 e_2^3}{3 m_3 e_3^3} $$
bei I_2, I_1 (125)

In Fig. 10 befindet sich der Magnet 2 in q'; der Ort für den Magnet 3 wird dann die Gerade $\partial q''$. Es ergibt sich

$$ e_1 : e_3 = \mp \cos (\omega_2 - \zeta) : \cos (\omega_2 + \zeta) $$
nämlich für $\omega_2 > \frac{\pi}{2} - \zeta$ und für $\omega_2 \leq \frac{\pi}{2} - \zeta$ (126)

$$ e_2 : e_3 = \mp \sin 2 \zeta : \cos (\omega_2 + \zeta) $$
nämlich für $\omega_2 > \frac{\pi}{2} - \zeta$ auf $\partial q'$, für $\omega_2 < \frac{\pi}{2} - \zeta$, auf q''. 126)

In den Fällen I_1 und I_2 erhält man dann aus (125)

$$ \sin 2 \omega_2 \cos^3 (\omega_2 + \zeta) = \pm \frac{32 m_2 V_2}{81 m_3} $$

und zwar für $\omega_2 > \frac{\pi}{2} - \zeta$, für $\omega_2 < \frac{\pi}{2} - \zeta$. 127)

Die Curve

$$ y = \sin 2 x \cos^3 (x + \zeta) $$

liefer $y = o$ für $x = o$, $\frac{\pi}{2} - \zeta$, $\frac{\pi}{2}$, π. 128)

Die Untersuchung der Extreme führt auf die Gleichung

$$ \tan^3 x - 4 \tan^2 x \cdot \sqrt{2} - 4 \tan x + \sqrt{2} = o $$

woraus

$$ x = \left\{ \begin{array}{l}
14^\circ 38', 56'' \\
80^\circ 55', 25'' \\
139^\circ 9', 47''
\end{array} \right. $$
y $= \left\{ \begin{array}{l}
0.1307 \ \text{Maximum} \\
-0.0268 \ \text{Minimum} \\
0.9755 \ \text{Maximum.}
\end{array} \right.$

Die Curve (Nr. 4) ist in Fig. 12 dargestellt; ihre Verwandtschaft mit Curve 3 ist augenscheinlich. Da die rechte Seite in (127) für $\omega_2 > \frac{\pi}{2} - \zeta$ positiv, so lehrt der Anblick der Curve 4, dass, falls $\frac{32 m_2 V_2}{81 m_3} \leq 0.9755$ oder $m_3 \geq 0.5727 m_2$, im allgemeinen zwei Lösungen, welche der Strecke ef' entsprechen, vorhanden sind, nämlich

$$ \gamma_1 \geq \frac{\pi}{2} \quad \gamma_2 \geq 139^\circ 9', 47'' $$

$$ \leq 139^\circ 9', 47'' < \pi. $$
Für \(\omega_2 < \frac{\pi}{2} - \zeta \) wird die rechte Seite in (127) negativ, und man erkennt aus Curve 4, dass keine Lösung möglich ist.

In den Fällen I2 und II1 erhält man die Gleichung

\[
\sin 2\omega_2 \cos^3 (\omega_2 + \zeta) = \mp \frac{32 m_2 V}{81 m_3} \tag{130}
\]

d. i. für \(\omega_2 > \frac{\pi}{2} - \zeta \), + für \(\omega_2 < \frac{\pi}{2} - \zeta \).

Die Curve 4 liefert für \(\omega_2 > \frac{\pi}{2} - \zeta \), wenn nur \(\frac{32 m_2 V}{81 m_3} \leq 0 \cdot 0268 \) oder \(m_3 \geq 20 \cdot 8619 m_2 \), im allgemeinen zwei der Strecke \(\vartheta \epsilon \) entsprechende Auflösungen

\[
\eta_1 > \frac{\pi}{2} - \zeta \quad \geq 80^\circ 55' 25'' \\
\eta_2 < \frac{\pi}{2} \quad \leq 80^\circ 55' 25''
\]

Für \(\omega_2 < \frac{\pi}{2} - \zeta \) zeigt die Curve, dass, sobald \(\frac{32 m_2 V}{81 m_3} \leq 0 \cdot 1307 \) oder \(m_3 \geq 4 \cdot 2760 m_2 \), im allgemeinen ebenfalls zwei Auflösungen

\[
\eta_1 > 0 \quad \geq 14^\circ 38' 56'' \\
\eta_2 < \frac{\pi}{2} - \zeta
\]

vorhanden sind, welche der Strecke \(\vartheta \delta \) entsprechen.

Die geometrischen Orter für den Magnet 3 sind daher in den Fällen I1 \(\vartheta \delta \) und II2 \(\vartheta \delta \) die Strecke \(\epsilon f' \) (Bed. \(m_3 \leq 0 \cdot 5727 m_2 \)), in den Fällen I2 \(\vartheta \delta \) und II1 \(\vartheta \delta \) die Strecken \(\vartheta \epsilon \) (Bed. \(m_3 \leq 20 \cdot 8619 m_2 \)) und \(\vartheta \delta \) (Bed. \(m_3 \leq 4 \cdot 2760 m_2 \)). Was die Directionsmomente anlangt, erhält man in den Fällen I1 \(\vartheta \delta \) und II2 \(\vartheta \delta \)

für die ganze Strecke \(\epsilon f' \)

\[
V_1 = \pm \frac{3m_2 \eta_3}{2e_2^3} \left(V \frac{2 \sin 2\gamma + \cos 2\gamma + \frac{1}{3}} \right)
\]

für die Strecke \(\epsilon \eta' \) aber

\[
V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 V}{\cos^3 \left(\frac{2 \cos^3 \left(\gamma - \zeta \right)}{\cos^3 \left(\frac{2 \cos^3 \left(\gamma + \zeta \right)}{m_3} \right)} + m_3 V \right) \right) \tag{131}
\]

und für \(\vartheta \delta \)

\[
V_3 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 V}{\cos^3 \left(\frac{2 \cos^3 \left(\gamma - \zeta \right)}{\cos^3 \left(\frac{2 \cos^3 \left(\gamma + \zeta \right)}{m_3} \right)} + m_3 V \right) \right)
\]

31
Die oberen Zeichen entsprechen $1 \, d \delta$, die unteren $2 \, d \theta$

Es ist nun

\[
V^2 \sin 2 \eta + \cos 2 \eta + \frac{1}{3} = \begin{align*}
- \frac{2}{3} & \quad \eta = \frac{\pi}{2} \\
0 & \quad \eta = \pi - \frac{\zeta + \lambda}{2} \\
\frac{4}{3} & \quad \eta = \pi
\end{align*}
\]

132)

Dann wird auf e^o für $1 \, d \delta$ \quad $V_1 \begin{align*}
\geq o \text{ auf } h'^f \\
= o \text{ im Punkt } h' \\
< o \text{ auf } e h'^t
\end{align*}$

für $2 \, d \theta$ \quad $V_1 \begin{align*}
\geq o \text{ auf } h'^f \\
= o \text{ im Punkt } h' \\
< o \text{ auf } e h'^t
\end{align*}$

133)

d. h. im Falle $1 \, d \delta$

134)

und im Falle $2 \, d \theta$

da zufolge der bei der fünften Gruppe gegebenen Constructionen $\neq f p h' = \pi - \frac{\zeta + \lambda}{2}$ ist.

Berücksichtigt man, dass η auf $e q' t$ zwischen $\frac{\pi}{2}$ und $\frac{\pi}{2} + \zeta$, auf $q' f' t$ zwischen $\frac{\pi}{2} + \zeta$ und π liegt, so hat man sofort

für $1 \, d \delta$ auf $e q' t$ \quad $V_2 \begin{align*}
\geq o \text{, je nachdem } m_3 \geq - \frac{m_1 \cos^3 (\eta - \zeta)}{\cos^3 (\eta + \zeta)}
\end{align*}$

auf $q' f' t$ \quad $V_2 \begin{align*}
\geq o \text{, je nachdem } m_3 \geq \frac{m_1 \cos^3 (\eta - \zeta)}{\cos^3 (\eta + \zeta)}
\end{align*}$

135)

und für $2 \, d \delta$ auf $e f' t$ \quad $V_2 \geq o$.

Für die Directionsmomente ergibt sich bei $2 \, d \theta$ und $1 \, d \delta$

auf o^e und $f^i \delta$ \quad $V_1 = \mp \frac{3 m_1 m_3}{2 e_2^3} \left(V^2 \sin 2 \eta + \cos 2 \eta + \frac{1}{3} \right)$

auf o^e \quad $V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 V^2 \cos^3 (\eta - \zeta)}{\cos^3 (\eta + \zeta)} - m_3 V^2 \right)$

auf $f^i \delta$ \quad $V_2 = \frac{m_2}{e_1^3} \left(\mp \frac{m_1 V^2 \cos^3 (\eta - \zeta)}{\cos^3 (\eta + \zeta)} - m_3 V^2 \right)$

136)
Die oberen Zeichen gelten für \(1 \, 2 \, d \vartheta\), die unteren für \(II \, 1 \, d \vartheta\). Nun ist

\[
V \frac{2}{\sin 2 \eta + \cos 2 \eta + \frac{1}{3}} = \begin{cases} \frac{4}{3} \eta = \frac{\pi}{2} - \frac{\zeta}{2} \\ o \eta = \frac{\pi}{2} \frac{\zeta - \lambda}{2} \end{cases} \partial e \\
\begin{cases} \frac{2}{3} \eta = \frac{\pi}{2} \\ \frac{4}{3} \eta = o \\ \frac{4}{3} \eta = \frac{\pi}{2} - \zeta \end{cases} \partial' e
\]

(137)

Mit Berücksichtigung der für \(\eta\) geltenden Grenzen hat man dann

im Falle I \(2 \, d \vartheta\) auf \(\partial' e\) \(V_1 \geq o\), je nachdem \(\eta \geq \frac{\pi}{2} - \frac{\zeta - \lambda}{2}\)

auf \(f' \partial\) \(V_1 < o\)
dagegen auf \(\partial' e\) und \(f' \partial\) \(V_2 < o\)

im Falle II \(1 \, d \vartheta\) auf \(\partial' e\) \(V_1 \leq o\), je nachdem \(\eta \leq \frac{\pi}{2} - \frac{\zeta - \lambda}{2}\)

auf \(f' \partial\) \(V_1 > o\)

auf \(\partial' e\) \(V_2 \geq o\), je nachdem \(m_3 \leq \frac{\cos (\eta - \zeta)}{\cos^3 (\eta + \zeta)}\)

auf \(f' \partial\) \(V_2 \geq o\), je nachdem \(m_3 \geq \frac{\cos (\eta - \zeta)}{\cos^3 (\eta + \zeta)}\)

Da nach der Construction \(\approx fph_1 = \frac{\pi}{2} - \frac{\zeta - \lambda}{2}\) ist, so hat man auch

bei I \(2 \, d \vartheta\)

\[
V_1 \begin{cases} \leq o \text{ auf } \partial' h_1 \text{ und } f' \partial \\ \geq o \text{ im Punkte } h_1 \\ > o \text{ auf } h_1 e \end{cases}
\]

bei II \(1 \, d \vartheta\)

\[
V_1 \begin{cases} \geq o \text{ auf } \partial' h_1 \text{ und } f' \partial \\ \leq o \text{ im Punkte } h_1 \\ < o \text{ auf } h_1 e \end{cases}
\]

(139)
Die mit den Bezeichnungen \(c \hat{\omega} \) und \(d \gamma \) zu verschiedenen Gruppen entsprechen
\[
\omega_3 = \frac{\pi}{2} - \xi, \quad \omega_1 = \frac{\pi}{2} - \xi \quad \text{und} \quad \omega_3 = \frac{\pi}{2} + \xi, \quad \omega_1 = \frac{\pi}{2} + \xi
\]
d. h. den Fällen, in welchen die Centra der drei Magnete in einer Geraden liegen; es würde daraus folgen
\[
\omega_2 = \frac{\pi}{2} - \xi \quad \text{und} \quad \omega_2 = \frac{\pi}{2} + \xi
\]
was durch die Gleichungen 38) und 40) nur unter ganz bestimmten, also hier ausgeschlossenen Verhältnissen der Momente \(m_2, m_3 \) genügt wird. Die Untersuchung der Fälle I 1, II 1, I 2, II 2 ist demnach hiermit abgeschlossen.

\[2. \text{ Falle I 3, I 4, II 3, II 4} \]
\[
\left(\alpha_2 = \pm \frac{\pi}{2}, \quad \alpha_3 = \pm \frac{\pi}{2} \right)
\]

Die Gleichungen 34) und 35) werden

I 3, I 4
\[
\begin{align*}
\frac{m_2}{e_3^3} (3 \sin^2 \omega_3 - 1) & \pm \frac{m_3}{e_2^3} (3 \sin^2 \omega_2 - 1) = o \\
\frac{m_1}{e_3^3} (3 \sin^2 \omega_3 - 2) & \mp \frac{3m_3}{e_1^3} \sin \omega_1 \cos \omega_1 = o \\
V_1 &= m_1 \left(\frac{3m_2 \sin 2 \omega_3}{2e_3^3} \pm \frac{3m_3 \sin 2 \omega_2}{2e_2^3} \right) \\
V_2 &= m_2 \left(\frac{3m_1 \sin 2 \omega_3}{2e_3^3} \pm \frac{m_3 (3 \sin^2 \omega_1 - 1)}{e_1^3} \right)
\end{align*}
\]

II 3, II 4
\[
\begin{align*}
\frac{m_2}{e_3^3} (3 \sin^2 \omega_3 - 1) & \pm \frac{m_3}{e_2^3} (3 \sin^2 \omega_2 - 1) = o \\
\frac{m_1}{e_3^3} (3 \sin^2 \omega_3 - 2) & \mp \frac{3m_3}{e_1^3} \sin \omega_1 \cos \omega_1 = o \\
V_1 &= m_1 \left(-\frac{3m_2 \sin 2 \omega_3}{2e_3^3} \pm \frac{3m_3 \sin 2 \omega_2}{2e_2^3} \right) \\
V_2 &= -m_2 \left(\frac{3m_1 \sin 2 \omega_3}{2e_3^3} \pm \frac{m_3 (3 \sin^2 \omega_1 - 1)}{e_1^3} \right)
\end{align*}
\]
Man wird nun wieder setzen

entweder \(3 \sin^2 \omega_3 - 2 = o\), d. h.
\[k) \quad \omega_3 = \frac{\pi}{2} - \zeta\]
\[l) \quad \omega_3 = \frac{\pi}{2} + \zeta\]
oder \(3 \sin^2 \omega_3 - 1 = o\), d. h.
\[m) \quad \omega_3 = \zeta\]
\[n) \quad \omega_3 = \pi - \zeta\]

Für \(k\) und \(l\) entspringt dann \(\sin \omega_1 \cos \omega_1 = o\), woraus
\[x) \quad \omega_1 = o\]
\[\lambda) \quad \omega_1 = \frac{\pi}{2}\]

während für \(m\) und \(n\) erhalten wird \(3 \sin^2 \omega_2 - 1\), woraus
\[\mu) \quad \omega_2 = \pi - \zeta\]
\[\nu) \quad \omega_2 = \zeta\]
folgt. Auch hier ergeben sich 32 Fälle, welche sich später auf 24 reduzieren und in Gruppen zu je vierem geordnet werden können.

Siebente Gruppe.

I 3 kx, II 4 kx. I 4 kx, II 3 kx.

Hier ist überall \(\omega_3 = \frac{\pi}{2} - \zeta\), \(\omega_1 = o\), so dass für \(\omega_2\) die Gleichung resultiert

\[3 \sin^2 \omega_2 - 1 = \pm \frac{m_2 \cos^3 \omega_2}{m_3 \cos^3 \omega_2} \quad \mp \{\text{I 3, II 4} \quad \{\text{I 4, II 3} \quad 141}\}

In Fig. 13 befindet sich der Magnet 1 in \(p\), der Magnet 2 in \(q\), so dass \(\zeta\) \(dpq = d'pq' = \frac{\pi}{2} - \zeta\); der Ort für den bei 3 nach E, bei 4 nach W gekehrten Magnet 3 ist der durch \(q\) gehende Meridian \(dd'\). Man findet, dass bei beliebiger Lage des Magnets 3 auf \(dd'\)

\[e_1 : e_3 = \pm \cos (\omega_2 + \zeta) : \sin \omega_2\]

je nachdem \(\omega_2 \leq \frac{\pi}{2} - \zeta\), also + auf \(qd\); - auf \(d'q\)

\[142\]

\[e_2 : e_3 = \cos \zeta : \sin \omega_2\]

Dadurch geht 142) über in

\[\sin^3 \omega_2 (3 \sin^2 \omega_2 - 1) = \pm \frac{m_2 \cos^3 \zeta}{m_3} = \pm \frac{2 m_2}{3 m_3} \sqrt[3]{\frac{2}{3}} \quad \mp \{\text{I 3, II 4} \quad \{\text{I 4, II 3} \quad 143\}

\]
— 244 —

Untersucht man die Curve \(y = \sin^3 x (3 \sin^2 x - 1) \)
so ergibt sich
\[
y = o \quad \text{für} \quad x = o, \quad \zeta, \quad \pi - \zeta, \quad \pi
\]
Maximum für \(x = \frac{\pi}{2}, \quad y = 2 \)
\[
\begin{align*}
\text{Minimum für } x = \begin{cases}
\arcsin \sqrt{\frac{1}{5}} = 26^\circ 33' 54'' & y = \frac{2}{25 \sqrt{5}} \\
\pi - \arcsin \sqrt{\frac{1}{5}} = 153^\circ 26' 6'' & y = \frac{2}{25 \sqrt{5}}
\end{cases}
\end{align*}
\]

Die Curve (Nr. 5) ist in Fig. 14 dargestellt.

Falls die rechte Seite in 143) negativ, ersieht man aus Curve 5, dass, wenn nur
\[
\frac{2m_2}{3m_3} \sqrt{\frac{2}{3}} < \frac{2}{25 \sqrt{5}} \quad \text{oder} \quad m_3 \geq \frac{25}{3} \sqrt{\frac{10}{3}} \quad m_2, \text{im allgemeinen vier Lösungen}
\]
\[
\eta_1 > o \quad \eta_3 \leq 26^\circ 33' 54'' \quad \eta_4 \leq 153^\circ 26' 6''
\]
\[
\eta_2 \geq \pi - \zeta \quad \eta_3 \leq 153^\circ 26' 6'' \quad \eta_4 \leq 153^\circ 26' 6''
\]

existieren, welche \(\eta \) entsprechen.

Die geometrischen Orter für den Magnet 3 sind mithin bei I 3 k x und II 4 k x
die Strecken \(de \) und \(fd \) (Bed. \(m_3 \geq \frac{25}{3} \sqrt{\frac{10}{3}} m_2 \)), bei I 4 k x und II 3 k x die Strecke
\(ef \) (Bed. \(m_3 \geq \frac{m_2}{3} \sqrt{\frac{2}{3}} \)).

In den Fällen I 3 und II 4 erhält man für die Directionsmomente
auf \(de \) und \(fd \)
\[
V_i = \pm \frac{3m_1 m_3}{2\varepsilon_2^3} \left(\sin 2\eta + \sqrt{2} \cos 2\eta - \frac{\sqrt{2}}{3} \right)
\]
Das obere Zeichen gilt für I3, das untere für II4. Nun ist

\[
\sin 2 \gamma + \sqrt{2} \cos 2 \gamma - \frac{\sqrt{2}}{3} = \left\{ \begin{array}{l}
\frac{2 \sqrt{2}}{3} \gamma = \frac{\pi}{2} + 2 \zeta \\
0 \quad \gamma = \frac{\pi}{2} + 2 \zeta \\
-\frac{2 \sqrt{2}}{3} \gamma = \pi - \zeta \\
\frac{2 \sqrt{2}}{3} \left\{ \begin{array}{l}
\gamma = \zeta \\
\eta = \pi \\
\eta = o \end{array} \right. \\
\end{array} \right.
\]

147)

Es wird daher bei I3kx auf d'e \(V_1 \gtrless o \), je nachdem \(\gamma \gtrless \frac{\pi}{2} + 2 \zeta \)

auf f'd \(V_1 > o \)

bei II4kx auf d'e \(V_1 \gtrless o \), je nachdem \(\gamma \gtrless \frac{\pi}{2} + 2 \zeta \)

auf f'd \(V_1 < o \)

Macht man in Fig. 13 \(f_k = e_k = f_k \), so wird für \(qu = 1 \), \(pu = \sqrt{2} \), \(ku = 4 \), also \(\tan \phi u = \frac{\sqrt{2}}{4} = \cot 2 \zeta \), d. h. \(gph = \frac{\pi}{2} - 2 \zeta \), \(gph' = \frac{\pi}{2} + 2 \zeta \)

Mithin bei I3kx

\[
V_1 \left\{ \begin{array}{l}
> o \quad \text{auf } d'h' \quad \text{und } f'd \\
= o \quad \text{in } h' \\
< o \quad \text{auf } h'e \end{array} \right.
\]

bei II4kx

\[
V_1 \left\{ \begin{array}{l}
> o \quad \text{auf } h'e \\
= o \quad \text{in } h' \\
< o \quad \text{auf } d'h' \quad \text{und } f'd \\
\end{array} \right.
\]

149)

Ferner erhält man auf der Strecke f'd

\[
V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 \sqrt{2} \cos^3 (\gamma + \zeta)}{\sin^3 \gamma} - m_3 \right)
\]

und auf d'e

\[
V_2 = \frac{m_2}{e_1^3} \left(\mp \frac{m_1 \sqrt{2} \cos^3 (\gamma + \zeta)}{\sin^3 \gamma} - m_3 \right)
\]

150)

Die oberen Zeichen gelten für I3, die unteren für II4. Berücksichtigt man, dass \(\gamma \)
auf f'd die Grenzen \(o \) und \(\zeta \), auf d'e aber \(\pi - \zeta \) und \(\pi \) hat, so findet man leicht

bei I3kx auf f'd \(V_2 \gtrless o \), je nachdem \(m_3 \gtrless \frac{m_1 \sqrt{2} \cos^3 (\gamma + \zeta)}{\sin^3 \gamma} \)

auf d'e \(V_2 \gtrless o \), je nachdem \(m_3 \gtrless -\frac{m_1 \sqrt{2} \cos^3 (\gamma + \zeta)}{\sin^3 \gamma} \)

151)

bei II4kx überall \(V_2 < o \).

Nouv. Mémoires, Tome XIV.
In den Fällen $I 4 k x$ und $II 3 k x$ wird

auf ef \[V_1 = \mp \frac{3 m_l}{2 e_2^2} m_3 \left(\sin 2 \gamma + \sqrt{2} \cos 2 \gamma - \frac{\sqrt{2}}{3} \right) \]

auf qf \[V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1}{\sqrt{2}} \cos^3 (\gamma + \zeta) + m_3 \right) \]

auf eq \[V_2 = \frac{m_2}{e_1^3} \left(\mp \frac{m_1}{\sqrt{2}} \cos^3 (\gamma + \zeta) + m_3 \right) \] \hspace{1cm} (152)

Die oberen Zeichen gelten für $I 4$, die unteren für $II 3$.

Es ist nun

\[\sin 2 \gamma + \sqrt{2} \cos 2 \gamma - \frac{\sqrt{2}}{3} = \begin{cases} \frac{2}{3} \sqrt{2} & \gamma = \zeta \\ 0 & \gamma = \frac{\pi}{2} - \zeta \\ -\frac{2}{3} \sqrt{2} & \gamma = \pi - \zeta \end{cases} \] \hspace{1cm} (153)

Mit Berücksichtigung der Grenzen für γ hat man dann

bei $I 4 k x$
- auf qf $V_1 < o$
- auf eq $V_1 > o$
- auf ef $V_2 > o$

bei $II 3 k x$
- auf qf $V_1 > o$
- auf eq $V_1 < o$

auf qf $V_2 \leq o$, je nachdem $m_3 \geq m_1 \frac{\sqrt{2}}{\sin^3 \gamma} \cos^3 (\gamma + \zeta)$

auf eq $V_2 \leq o$, je nachdem $m_3 \geq -m_1 \frac{\sqrt{2}}{\sin^3 \gamma} \cos^3 (\gamma + \zeta)$ \hspace{1cm} (154)

\textbf{Achte Gruppe.}

$I 3 l x, II 4 l x, I 4 l x, II 3 l x$.

Man erhält hier, wegen $\omega_3 = \frac{\pi}{2} + \zeta, \omega_1 = o$, wie in (141)

\[3 \sin^2 \omega_2 - 1 = \mp \frac{m_2 e_2^2}{m_3 e_3^2} \] \hspace{1cm} (155)
In Fig. 13 liegt der Magnet 2 in γ', so dass $q'q'' = \frac{\pi}{2} + \zeta$. Man findet
\[e_1 : e_3 = \pm \cos \left(\omega_2 - \zeta \right) : \sin \omega_2 \]
jedoch nach $\zeta \leq \frac{\pi}{2} + \zeta$, also $+ q'd$, $- q'd$.
\[e_2 : e_3 = \cos \zeta : \sin \omega_2. \]
Hierdurch wird $\sin^3 \omega_2 (3 \sin^2 \omega_2 - 1) = \mp \frac{2 m_2}{3 m_3} \sqrt[3]{\frac{2}{3}} \mp \left(\text{I 4, II 3} \right. \left. 157 \right)

Man hat also für das obere Zeichen aus Curve 5 sofort im allgemeinen vier Auflösungen
\[\gamma_1 \geq \frac{\pi}{2} \quad \gamma_2 \leq \frac{\pi}{2} \quad \gamma_3 \geq \pi - \zeta \quad \gamma_4 < \pi \]
sobald nur, wie bei der siebenten Gruppe $m_3 \geq \frac{25}{3} \sqrt[3]{\frac{10}{3}} m_2$; die entsprechenden
Strecken sind $d'e$ und fd.

Für das untere Zeichen gibt die Curve 5 im allgemeinen 2 Auflösungen
\[\gamma_1 \leq \frac{\pi}{2} \quad \gamma_2 \geq \frac{\pi}{2} \quad \gamma_3 \geq \pi - \zeta \quad \gamma_4 < \pi \]

welche ef entsprechen, unter der Bedingung $m_3 \geq \frac{25}{3} \sqrt[3]{\frac{10}{3}} m_2$.

Die geometrischen Orter für den Magnet 3 sind daher in den Fällen I 3 ℓx, II 4 ℓx die Strecken $d'e$ und fd \(\text{Bed. } m_3 \geq \frac{25}{3} \sqrt[3]{\frac{10}{3}} m_2 \), bei I 4 ℓx, II 3 ℓx dagegen die Strecke ef \(\text{Bed. } m_3 \geq \frac{m_2}{3} \sqrt[3]{\frac{2}{3}} \).

Für die Directionsmomente erhält man bei I 3 und II 4
\[V_1 = \pm \frac{3 m_1}{e_3^3} m_3 \left(\sin 2 \gamma - \sqrt{2} \cos 2 \gamma + \frac{\sqrt{2}}{3} \right) \]
\[V_2 = \frac{m_2}{e_4^3} \left(\pm \frac{m_1}{e_3} \sqrt{2} \cos \left(\frac{\gamma - \zeta}{\sin \gamma} \right) - m_3 \right) \]
\[V_2 = \frac{m_2}{e_4^3} \left(\pm \frac{m_1}{e_3} \sqrt{2} \cos \left(\frac{\gamma - \zeta}{\sin \gamma} \right) - m_3 \right) \]

32
Nun ist
\[
\begin{align*}
\sin 2\gamma - \sqrt{2} \cos 2\gamma + \frac{\sqrt{2}}{3} &= \begin{pmatrix}
-\frac{2\sqrt{2}}{3} \\
-\frac{2\sqrt{2}}{3} \\
\frac{2\sqrt{2}}{3} \\
\frac{2\sqrt{2}}{3} \\
-\frac{2\sqrt{2}}{3}
\end{pmatrix} \begin{pmatrix}
\pi \\
\pi - \zeta \\
\zeta \\
\frac{\pi}{2} - 2\zeta \\
o
\end{pmatrix} d'e
\end{align*}
\]
\[\eta = \begin{pmatrix}
\zeta \\
o
\end{pmatrix} \begin{pmatrix}

\end{pmatrix} fd
\]
\[159\]

Daraus folgt für I 3 l\(x\)

auf d'e \(V_1 < o\)

auf fd \(V_1 > o\), je nachdem \(\eta > \frac{\pi}{2} - 2\zeta\)

für II 4 l\(x\)

auf d'e \(V_1 > o\)

auf fd \(V_1 < o\), je nachdem \(\eta > \frac{\pi}{2} - 2\zeta\)

oder für I 3 l\(x\)

\[V_1 \begin{cases}
> o \text{ auf } fh \\
= o \text{ in } h \\
< o \text{ auf } d'e \text{ und } hd
\end{cases}\]

für II 4 l\(x\)

\[V_1 \begin{cases}
> o \text{ auf } d'e \text{ und } hd \\
= o \text{ in } h \\
< o \text{ auf } fh
\end{cases}\]

Die Grenzen für \(\eta\) sind auf d'e \(\pi\) und \(\frac{\pi}{2} - \zeta\) auf fd \(o\) und \(\zeta\), es wird daher

für I 3 l\(x\) \(V_2 < o\)

für II 4 l\(x\) auf fd \(V_2 \geq o\), je nachdem \(m_3 > \frac{m_1 \sqrt{2} \cos^3 (\eta - \zeta)}{\sin^3 \eta}\)

auf d'e \(V_2 \geq o\), je nachdem \(m_3 > \frac{-m_1 \sqrt{2} \cos^3 (\eta - \zeta)}{\sin^3 \eta}\)

\[161\]

In den Fällen I 4 l\(x\) und II 3 l\(x\) wird

auf ef \(V_1 = \frac{3 m_1 m_3}{e_2^3} \left(\sin 2\gamma - \sqrt{2} \cos 2\gamma + \frac{\sqrt{2}}{3}\right)\)

auf eq' \(V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 \sqrt{2} \cos^3 (\eta - \zeta)}{\sin^3 \eta} + m_3\right)\)

auf qf' \(V_2 = \frac{m_2}{e_1^3} \left(\mp m_1 \sqrt{2} \cos^3 (\eta - \zeta) + m_3\right)\)

\[162\]
Nun ist
\[
\sin 2 \eta - \sqrt{2} \cos 2 \eta + \frac{\sqrt{2}}{3} = \begin{cases} \frac{2 \sqrt{2}}{3} & \eta = \left\{ \begin{array}{l} \frac{\pi}{2} + \zeta \\ \pi - \zeta \end{array} \right\} q'f \\ - \frac{2 \sqrt{2}}{3} \end{cases}
\]
(163)

d. h. für I 4lx auf \(q'f \) \(V_1 < 0 \)
und mit Berücksichtigung der Grenzen für \(\eta \)

für I 4lx auf \(q'f \) \(V_2 \leq 0 \), je nachdem \(m_3 \geq m_1 \frac{\sqrt{2}}{\sin^3 \eta} \cos^3 (\eta - \zeta) \)

und mit Berücksichtigung der Grenzen für \(\eta \)

Nichtte Gruppe.

I 3k\(\lambda \), II 4k\(\lambda \), I 4k\(\lambda \), II 3k\(\lambda \).

Hier ist \(\omega_3 = \frac{\pi}{2} - \zeta \), \(\omega_1 = \frac{\pi}{2} \), und man erhält
\[
3 \sin^2 \omega_2 - 1 = \mp \frac{m_2 e_2^2}{m_3 e_3^2} \mp \left\{ \begin{array}{l} I 3, \ II 4 \\ I 4, \ II 3 \end{array} \right\}
\]
(165)

In Fig. 15 befindet sich der Magnet 1 in \(p \), der Magnet 2 in \(q \), so dass
\(\mp \frac{g_p q = \frac{\pi}{2} - \zeta }{2} \), der Ort für den nach \(E \) oder \(W \) gekehrten Magnet 3 ist die Gerade \(dd' \). Man gewinnt leicht
\[
e_1 : e_3 = \mp \cos (\omega_2 + \zeta) : \cos \omega_2
\]

für \(\omega_2 \) zwischen \(\frac{\pi}{2} - \zeta \) und \(\frac{\pi}{2} \), auf \(d'q \), für \(\omega_2 \) zwischen 0 und \(\frac{\pi}{2} - \zeta \), \(\frac{\pi}{2} \), auf \(qd \). (166)

\[
e_2 : e_3 = \pm \sin \zeta : \cos \omega_2
\]

für \(\omega_2 \) zwischen 0 und \(\frac{\pi}{2} \), auf \(d'g \), für \(\omega_2 \) zwischen \(\frac{\pi}{2} \) und \(\pi \), auf \(gd \).
Dann wird aus (165)
\[
\cos^3 \omega_2 (2 - 3 \cos^2 \omega_2) = \mp \frac{m_2 \sin^3 \zeta}{m_3} = \mp \frac{m_2}{3 m_3 V_3} \text{ auf } d^q
\]
\[
= \pm \frac{m_2}{3 m_3 V_3} \text{ auf } gd
\]
Die oberen Zeichen gelten für I 3 und II 4, die unteren für I 4 und II 3.
Die Curve \(y = \cos^3 x (2 - 3 \cos^2 x) \)
gibt
\[
y = 0 \quad \text{für } x = \zeta, \frac{\pi}{2}, \pi - \zeta
\]
Maximum für \(x = \pi \) \(y = 1 \)
\[
x = \arccos \sqrt{\frac{2}{5}} = 50^\circ 46' 7'' \quad y = \frac{8\sqrt{2}}{25 V_5}
\]
Minimum für \(x = \pi, y = -1 \)
\[
x = \pi - \arccos \sqrt{\frac{2}{5}} = 129^\circ 13' 53'' \quad y = -\frac{8\sqrt{2}}{25 V_5}
\]
In Fig. 16 ist die Curve (Nr. 6) dargestellt.

Für die Fälle I 3 und II 4 hat man auf \(d^q \), d. h. \(\omega_2 < \frac{\pi}{2} \), die rechte Seite in (167) negativ und ersieht aus der Curve 6, dass unter der Bedingung \(\frac{m_2}{3 m_3 V_3} \leq 1 \)
or \(m_3 \geq \frac{m_2}{3 V_3} \), eine Lösung \(\gamma < \zeta \), entsprechend \(eg \), existiert, wenn in Fig. 15 \(qe = eg = gd \) gemacht ist. Auf \(gd \), für \(\omega_2 > \frac{\pi}{2} \), ist jene Seite positiv, und die Curve 6 gibt unter der nämlichen Bedingung eine \(gd \) entsprechende Lösung \(\gamma > \pi - \zeta \).

In den Fällen I 4 und II 3 kehren sich die Zeichen um, und man erhält unter der Bedingung \(\frac{m_2}{3 m_3 V_3} \leq \frac{8 \sqrt{2}}{25 V_5} \) oder \(m_3 \geq \frac{25}{24} \sqrt{5} \) \(m_2 \) für \(\omega_2 < \frac{\pi}{2} \) die beiden Lösungen
\[
\gamma_1 \leq 50^\circ 46' 7'' \quad \gamma_2 \leq \frac{\pi}{2}
\]
und für \(\omega_2 > \frac{\pi}{2} \)
\[
\gamma_1 \geq \frac{\pi}{2} \quad \gamma_2 \geq 129^\circ 13' 53''
\]
was den Strecken \(d'e \) und \(f'd \) entspricht.
Die geometrischen Oerter für den Magnet 3 sind daher in den Fällen I 3 kλ und II 4 kλ die Strecke ef (Bed. $m_3 \geq \frac{m_2}{3V^2/3}$), in den Fällen I 4 kλ und II 3 kλ die Strecken $d'e$ und fd (Bed. $m_3 \geq \frac{25}{24} \left\lfloor \sqrt{\frac{5}{6}m_2} \right\rfloor$).

In den Fällen I 3 und II 4 werden die Directionsmomente auf ef

$$V_1 = \pm \frac{3m_1m_3}{2e^3} \left(\sin 2\eta + \frac{V_2}{2} \cos 2\eta - \frac{V_2}{3} \right)$$

$$V_2 = \frac{m_2}{e^3} \left(\pm \frac{m_1}{\cos^3 \eta} \right)$$

Es ist

$$\sin 2\eta + \frac{V_2}{2} \cos 2\eta - \frac{V_2}{3} = \begin{cases} \frac{2V_2}{3} & \eta = \begin{cases} 0, \pi \\ \frac{\pi}{2} + 2\zeta \\ \pi - \zeta \end{cases} \\ \frac{2V_2}{3} \end{cases}$$

d. h. bei I 3 auf eg $V_1 > 0$

auf gf $V_1 \ll 0$, je nachdem $\eta \ll \frac{\pi}{2} + 2\zeta$

bei II 4 auf eg $V_1 < 0$

auf gf $V_1 \ll 0$, je nachdem $\eta \gg \frac{\pi}{2} + 2\zeta$.

In Fig. 15 ist h die Mitte von gf, und man findet leicht, dass $hpg = \frac{\pi}{2} - 2\zeta$.

es ist also bei I 3 kλ

$$V_1 \begin{cases} > 0 \text{ auf } eh \\ = 0 \text{ in } h \\ < 0 \text{ auf } hf \end{cases}$$

bei II 4 kλ

$$V_1 \begin{cases} > 0 \text{ auf } hf \\ = 0 \text{ in } h \\ < 0 \text{ auf } eh \end{cases}$$

Gemäß der Grenzen für η übersicht man leicht, dass

bei I 3 kλ $V_2 > 0$

bei II 4 kλ $V_2 \gg 0$, je nachdem $m_3 \gg \frac{m_1 \cos^3(\eta + \zeta)}{V^2 \cos^3 \eta}$
In den Fällen 1 4 und 2 3 erhält man

\[V_1 = \pm \frac{3 m_1 m_3}{2 e_2^3} \left(\sin 2 \varrho + \sqrt{2} \cos 2 \varrho - \frac{\sqrt{2}}{3} \right) \]

\[V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 \sqrt{2} \cos^3 (\varrho + \zeta)}{\cos^3 \varrho} - 2 m_3 \right) \]

Nun ist aber

\[
\begin{align*}
\sin 2 \varrho + \sqrt{2} \cos 2 \varrho - \frac{\sqrt{2}}{3} &= \begin{cases}
- \frac{4 \sqrt{2}}{3} & \text{für } \varrho = \begin{cases}
\frac{\pi}{2} - \zeta & \text{ge} \\
\frac{\pi}{2} & \text{fd}
\end{cases} \\
\frac{2 \sqrt{2}}{3} & \text{für } \varrho = \begin{cases}
\zeta & \text{qe} \\
\frac{\pi}{2} & \text{fd}
\end{cases}
\end{cases}
\end{align*}
\]

also für 1 4 k λ
\[V_1 \begin{cases}
> o & \text{auf } d'q \text{ und } fd \\
< o & \text{auf } ge
\end{cases} \]

für 2 3 k λ
\[V_1 \begin{cases}
> o & \text{auf } qe \\
< o & \text{auf } d'q \text{ und } fd
\end{cases} \]

Mit Rücksicht auf die Grenzen von γ findet man weiter

für 1 4 k λ auf d'q
\[V_2 \begin{cases}
> o, \text{ je nachdem } m_3 < - \frac{m_1 \cos^3 (\varrho + \zeta)}{\sqrt{2} \cos^3 \varrho}
\end{cases} \]

auf qe und fd
\[V_2 \begin{cases}
> o, \text{ je nachdem } m_3 < - \frac{m_1 \cos^3 (\varrho + \zeta)}{\sqrt{2} \cos^3 \varrho}
\end{cases} \]

für 2 3 k λ auf d'e und fd
\[V_2 < o. \]

Zehnte Gruppe.

1 3 l λ, 2 4 l λ, 1 4 l λ, 2 3 l λ.

Man hat diesmal \(\omega_3 = \frac{\pi}{2} + \zeta, \omega_1 = \frac{\pi}{2} \); in Fig. 15 befindet sich der Magnet 2 in q', der Ort für Magnet 3 wird die Gerade \(\partial \partial' \); es ist ferner \(q'e' = e'g' = g'f' \), und \(h' \) die Mitte von \(f'g' \). Ferner
3 \sin^2 \omega_2 - 1 = \mp \frac{m_2 e_3}{m_3 e_3^3} \quad \mp \left(\frac{1}{4}, \Pi 4 \right) \left(\frac{1}{4}, \Pi 3 \right)

und

e_1 : e_3 = \mp \cos (\omega_2 - \zeta) : \cos \omega_2

- für \omega_2 zwischen \frac{\pi}{2} und \frac{\pi}{2} + \zeta, auf \delta\gamma', + für \omega_2 zwischen \frac{\pi}{2} + \zeta und \pi, mit

\vartheta \text{ und } \frac{\pi}{2}, \text{ auf } \gamma\delta

178)

e_2 : e_4 = \mp \sin \zeta : \cos \omega_2

- für \omega_2 > \frac{\pi}{2}, auf \delta\gamma', + für \omega_2 < \frac{\pi}{2} auf \gamma\delta.

 Dann wird aus 177) \cos^3 \omega_2 \left(2 - 3 \cos^2 \omega_2 \right) = \pm \frac{m_2}{3 m_3} V \frac{5}{6} \text{ auf } \delta\gamma'

179)

und man erhält, wie bei der neunten Gruppe, in den Fällen I 3 und II 4 unter der Bedingung \(m_3 = \frac{m_2}{3 V \frac{5}{6}} \) eine Auflösung \(\gamma > \pi - \zeta \), entsprechend \(\gamma^o \), eine zweite \(\gamma < \zeta \), entsprechend \(\gamma^f \); dagegen in den Fällen I 4 und II 3, wenn \(m_3 = \frac{25}{24} \sqrt{\frac{5}{6} m_2} \), zwei Auflösungen \(\gamma_1 > \frac{\pi}{2} \), \(\gamma_2 > 129^o 13' 53'' \), entsprechend \(\gamma^e \), und zwei \(< \zeta \), \(> \pi - \zeta \)

weitere \(\gamma_1 < 50^o 46' 7'' \), \(\gamma_2 < \frac{\pi}{2} \), entsprechend \(f \).

Die geometrischen Orter für den Magnet 3 sind mit ihm in den Fällen I 3 \(\lambda \) und II 4 \(\lambda \) die Strecke \(\gamma f' \) \left(\text{Bed. } m_3 = \frac{m_2}{3 V \frac{5}{6}} \right) \), in den Fällen I 4 \(\lambda \) und II 3 \(\lambda \) die Strecken \(\gamma e \) und \(f'\delta \) \left(\text{Bed. } m_3 = \frac{25}{24} \sqrt{\frac{5}{6} m_2} \right).

Die Directionsmomente werden für I 3 und II 4, auf \(e f' \)

\[V_1 = \pm \frac{3 m_1 m_2}{2 e_3^3} \left(\sin 2\gamma - V \frac{2}{3} \cos 2\gamma + \frac{1}{3} \right) \]

\[V_2 = \frac{m_2}{e_3^3} \left(\mp \frac{m_1 V}{3}, \cos^3 (\gamma - \zeta) + 2 m_3 \right) \]

180)
Nun ist
\[
\sin 2 \gamma - \sqrt{2} \cos 2 \gamma + \frac{2}{3} = \begin{cases}
\frac{2 \sqrt{2}}{3} & \text{für } \gamma = \frac{\pi}{2} - 2 \zeta \left\{ \begin{array}{l}
g'k' \\
h'f' \end{array} \right. \\
\frac{2 \sqrt{2}}{3} & \text{für } \gamma = \frac{\pi}{2} - 2 \zeta \left\{ \begin{array}{l}
g'k' \\
h'f' \end{array} \right. \end{cases}
\]
und deshalb wird bei I 3 l l \(V_1 < o \) auf \(e'g' \)
auf \(g'f' \) \(V_1 \geq o \), je nachdem \(\gamma \geq \frac{\pi}{2} - 2 \zeta \)
bei II 4 l l \(V_1 > o \) auf \(e'g' \)
auf \(g'f' \) \(V_1 \leq o \), je nachdem \(\gamma \leq \frac{\pi}{2} - 2 \zeta \)
oder bei I 3 l l \(V_1 \left\{ \begin{array}{l}
> o \text{ auf } h'f' \\
= o \text{ in } h' \\
< o \text{ auf } e'h' \end{array} \right. \)
bei II 4 l l \(V_1 \left\{ \begin{array}{l}
> o \text{ auf } e'h' \\
= o \text{ in } h' \\
< o \text{ auf } h'f' \end{array} \right. \)
Berücksichtigt man die Grenzen für \(\gamma \), so findet man sehr leicht weiter
bei I 3 l l \(V_2 \leq o \), je nachdem \(m_3 \leq \frac{m_1 \cos^3 (\gamma - \zeta)}{\sqrt{2} \cos^3 \gamma } \)
bei II 4 l l \(V_2 > o \).
Für die Fälle I 4 l l und II 3 l l erhält man
auf \(\partial'e' \) und \(f'\partial' \) \(V_1 = \frac{3 m_1 m_3}{e_2^3} \left(\sin 2 \gamma - \sqrt{2} \cos 2 \gamma + \frac{V^2}{3} \right) \)
auf \(\partial'q' \) \(V_2 = \frac{m_2}{e_1^3} \left(\pm \frac{m_1 \sqrt{2} \cos^3 (\gamma - \zeta) - 2 m_3}{\cos^3 \gamma} \right) \)
auf \(q'\partial' \) \(V_2 = \frac{m_2}{e_1^3} \left(\mp \frac{m_1 \sqrt{2} \cos^3 (\gamma - \zeta) - 2 m_3}{\cos^3 \gamma} \right) \)
Nun ist
\[
\sin 2\eta - \sqrt{2} \cos 2\eta + \frac{\sqrt{2}}{3} = \begin{cases}
\frac{4\sqrt{2}}{3} & \text{für } \eta = \begin{cases}
\frac{\pi}{2} & \phi q' \\
\frac{\pi}{2} + \zeta & q'e' \\
\frac{\pi}{2} & f'\phi
\end{cases}
\end{cases}
\]

bei \(14\mu\)
\[
V_1 \begin{cases}
> o & \text{auf } q'e' \\
< o & \text{auf } \phi q' \text{ und } f'\phi
\end{cases}
\]
bei \(13\mu\)
\[
V_2 \begin{cases}
> o & \text{auf } \phi q' \text{ und } f'\phi \\
< o & \text{auf } q'e'
\end{cases}
\]

Unter Berücksichtigung der Grenzen für \(\eta\) hat man ferner
bei \(14\mu\)
\[
V_3 < o \text{ auf } \phi q' \text{ und } f'\phi
\]
bei \(13\mu\)
auf \(\phi q'\) \(V_2 \geq o\), je nachdem \(m_3 \leq \frac{m_1 \cos^3(\eta - \zeta)}{2 \cos^3 \eta}\)

auf \(q'e'\) und \(f'\phi\) \(V_2 \geq o\), je nachdem \(m_3 \leq \frac{m_1 \cos^3 (\eta - \zeta)}{2 \cos^3 \eta}\)

\[\text{Eltte Gruppe.}\]

\[I3m\mu, \quad II3m\mu, \quad I4m\mu, \quad II4m\mu.\]

Man hat für diese Fälle \(\omega_3 = \zeta, \omega_2 = \pi - \zeta\), so dass als Gleichung für \(\omega_1\) resultiert
\[
\sin 2\omega_1 = \pm \frac{2m_1 c_3^2}{3m_3 c_3^3} \mp \left\{ \begin{array}{c}
3 \\
4
\end{array} \right. \]

\[\text{In Fig. 17 befindet sich der Magnet 1 in } p, \text{ der Magnet 2 in } q, \text{ so dass } \angle gpq = g'pq' = \zeta; \text{ es ist } q q' \parallel gg', \text{ } q u = n q', \angle gpq' = \pi - \zeta; \text{ der Ort für den Magnet 3 ist daher auf } dd' \text{ zu suchen. Man findet dann}
\]
\[
e_1 : c_3 = \mp \sin 2\zeta \cdot \sin (\omega_1 + \zeta)
\]

für \(\omega_1 > \pi - \zeta\), auf \(d'q'\), + für \(\omega_1\) innerhalb der Grenzen \(o\) und \(\pi - \zeta\), auf \(q'd\)
\[
e_2 : c_3 = \mp \sin (\omega_1 - \zeta) \cdot \sin (\omega_1 + \zeta)
\]

für \(\omega_1\) innerhalb der Grenzen \(\pi - \zeta\) und \(\pi\) oder \(o\) und \(\zeta\), auf \(d'p\), + für \(\omega_1\) innerhalb der Grenzen \(\zeta\) und \(\pi - \zeta\), auf \(p'd\). Dadurch geht 188 über in
\[
\sin 2 \omega_1 \sin^3 (\omega_1 + \zeta) = \pm \frac{2m_1 \sin^3 2\zeta}{3m_3} = \pm \frac{32m_1 \sqrt{2}}{81m_3} \quad \text{auf } d'q' \tag{190}
\]

Die oberen Zeichen gehören zu den Fällen 3, die unteren zu 4.

Die Curve
\[
y' = \sin 2x \sin^3 (x + \zeta)
\]
liefert
\[
y = o \quad \text{für } x = o, \frac{\pi}{2}, \pi - \zeta, \pi.
\]

Die Untersuchung der Extreme führt auf die Gleichung
\[
tg^3 x + \frac{4tg^2 x}{\sqrt{2}} - 4tg x - \frac{1}{\sqrt{2}} = o \tag{192}
\]
deren Verwandtschaft mit (112) leicht zu erkennen ist. Man erhält daraus
\[
x = \begin{cases}
490^\circ 9' 47'' \\
1040^\circ 38' 56'' \\
1700^\circ 55' 25''
\end{cases} \quad y = \begin{cases}
0.9755 \text{ Maximum} \\
-0.1307 \text{ Minimum} \\
0.0268 \text{ Maximum}
\end{cases}
\]

Die Curve (Nr. 7) ist in Fig. 18 dargestellt. Man erfährt aus derselben bei den Fällen 3, dass für \(\omega_1\), innerhalb der Grenzen \(\pi - \zeta\) und \(\pi\) zwei Auflösungen existieren,
\[
> \pi - \zeta < 170^\circ 55' 25''
\]
entsprechend der Strecke \(d'q'\), falls nur \(\frac{32m_1 \sqrt{2}}{81m_3} < 0.0268\) oder \(m_3 \geq 20.8619m_1\), während für \(\omega_1\) innerhalb der Grenzen \(o\) und \(\pi - \zeta\) zwei weitere Auflösungen
\[
\eta_1 > \frac{\pi}{2} \quad \eta_2 < \pi - \zeta
\]
< 1040 38' 56' entsprechen \(d'q'\) vorhanden sind, wenn \(\frac{32m_1 \sqrt{2}}{81m_3} < 0.1307\) oder \(m_3 \geq 4.2760m_1\).

Bei den Fällen 4 erhält man für \(\omega_2 > \pi - \zeta\) keine Auflösung, für \(\omega_2 < \pi - \zeta\) dagegen zwei Auflösungen \(\eta_1 > o \quad \eta_2 < 499 9' 47''\), entsprechend \(q '/ f\), wozu die Bedingung \(\frac{32m_1 \sqrt{2}}{81m_3} < 0.9755\) oder \(m_3 \geq 0.5727m_1\) gehört.
Die geometrischen Orter für den Magnet 3 sind daher bei 13\(mp\) und 14\(mp\) die Strecken \(d'q'\) (Bed. \(m_3 \geq 20.8619 m_1\)) und \(fd\) (Bed. \(m_3 \geq 4.2760 m_1\)), bei 14\(mp\) und 14\(mp\) die Strecke \(q'f'\) (Bed. \(m_3 \geq 0.5727 m_1\)).

In den Fällen I 3 und II 3 werden die Directionsmomente

\[
\begin{align*}
\text{auf } d'q' & \quad V_1 = \frac{m_1 \sqrt{2}}{e_2^3} \left(\mp \frac{m_2 \sin^3(\gamma - \zeta)}{\sin^3(\gamma + \zeta)} - m_3 \right) \\
\text{auf } fd & \quad V_1 = \frac{m_1 \sqrt{2}}{e_2^3} \left(\pm \frac{m_2 \sin^3(\gamma - \zeta)}{\sin^3(\gamma + \zeta)} - m_3 \right) \\
\text{auf } d'q' \text{ und } fd & \quad V_2 = \mp \frac{3 m_2 m_3}{2 e_1^3} \left(\sqrt{2} \sin 2\gamma + \cos 2\gamma - \frac{1}{3} \right)
\end{align*}
\]

Es wird daher, weil auf \(d'q'\) die Grenzen für \(\eta\) sind \(\pi - \zeta\) und \(\pi\), auf \(fd\) aber \(\frac{\pi}{2}\) und \(\pi - \zeta\),

im Falle I 3\(mp\) auf \(d'q'\) \(V_1 \geq o\), je nachdem \(m_3 \leq \frac{m_2 \sin^3(\gamma - \zeta)}{\sin^3(\gamma + \zeta)} \leq m_3 \) \(194\)

auf \(fd\) \(V_1 \leq o\), je nachdem \(m_3 \leq \frac{m_2 \sin^3(\gamma - \zeta)}{\sin^3(\gamma + \zeta)} \leq m_3 \)

im Falle II 3\(mp\) auf \(d'q'\) und \(fd\) \(V_1 \leq o\).

Ferner ist

\[
V \sqrt{2} \sin 2\gamma + \cos 2\gamma - \frac{1}{3} = \left\{ \begin{array}{ll}
\frac{2}{3} & \text{für } \gamma = \pi \\
\frac{-4}{3} & \text{für } \gamma = \frac{\pi}{2}
\end{array} \right.
\]

\[
\begin{align*}
\text{auf } d'q' & \quad V_2 \geq o \\
\text{auf } fd & \quad V_2 \leq o
\end{align*}
\]

also bei I 3 auf \(fd\) \(V_2 > o\)

auf \(d'q'\) \(V_2 \geq o\), je nachdem \(\gamma \leq \pi - \frac{\zeta - \lambda}{2} \leq m_3 \)

bei II 3 auf \(fd\) \(V_2 \leq o\)

auf \(d'q'\) \(V_2 \geq o\), je nachdem \(\gamma \leq \pi - \frac{\zeta - \lambda}{2} \leq m_3 \) \(196\)
Analog früheren Constructionen ist in Fig. 17 \(pr = 3 pq' \) gemacht, \(n, n' \) sind die Mitten von \(q'r, qr; \ n h \perp d t, \ n' h' \perp \vartheta_0^2 \). Für \(p u = 1 \) ist \(w q' = V \frac{1}{2}, \ pq' = V \frac{3}{2}, \)
\(pr = 3 V \frac{3}{2}, \ \text{ferner} \ ur = V \frac{1}{2} 26, \ q' r = V \frac{1}{2} 26 - V \frac{1}{2} 2, \ qr = V \frac{1}{2} 26 + V \frac{1}{2} 2 \)
\[q'h = q h_1 = q' n \cdot \cos \zeta = \frac{1}{2} V 13 - 1 \cdot \frac{1}{2} 3 \;/ \ q h' = q'h_1 = q n' \cos \zeta = \frac{1}{2} V 13 + 1 \cdot \frac{1}{2} 3 \]
\[\sin q'qh : \sin q'hq = q'h : qq' = \frac{1}{2} V \frac{1}{2} 13 - 1 \cdot \frac{1}{2} 2 V \frac{1}{2} 2 = \cos \zeta - \frac{1}{2} \cdot \sin \frac{1}{2} + \frac{1}{2} \]
\[\sin h'qq' : \sin hq'q = q'h : qq' = \frac{1}{2} V \frac{1}{2} 13 + 1 \cdot \frac{1}{2} 2 V \frac{1}{2} 2 = \cos \zeta + \frac{1}{2} \cdot \cos \frac{1}{2} - \frac{1}{2} \]
was man durch 28) leicht bestätigt. Da nun \(qq'h = \pi - \zeta, \ h'qq' = \zeta \), so findet man
\[q'h = \frac{1}{2} - \frac{1}{2} \cdot \zeta - \frac{1}{2}, \quad qq' = \pi - \frac{1}{2} - \frac{1}{2} \cdot \zeta + \frac{1}{2}, \quad h'q'q = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \cdot \zeta + \frac{1}{2} \]
\[h'q'q' = \frac{1}{2} + \frac{1}{2} \cdot \zeta + \frac{1}{2}, \quad goq' = \frac{1}{2} + \frac{1}{2} \cdot \zeta + \frac{1}{2}, \quad goq_1 = \frac{1}{2} - \frac{1}{2} \cdot \zeta - \frac{1}{2} \]

Dann ist bei I 3 \(m, \mu \)
\[V_2 \begin{cases} > o \text{ auf } d' h \text{ und } f d \hfill 190) \\ = o \text{ in } h \\ < o \text{ auf } h q' \\ \end{cases} \]
bei II 3 \(m, \mu \)
\[V_2 \begin{cases} > o \text{ auf } h q' \\ = o \text{ in } h \\ < o \text{ auf } d' h \text{ und } f d \\ \end{cases} \]

In den Fällen I 4 und II 4 werden die Directionsmomente
\[\text{auf } q'p \quad V_1 = \frac{m_1 V^2}{e_2^3} \left(\pm \frac{m_2 \sin^3 (\eta - \zeta)}{\sin^3 (\eta + \zeta)} + m_3 \right) \]
\[\text{auf } pf \quad V_1 = \frac{m_1 V^2}{e_2^3} \left(\pm \frac{m_2 \sin^3 (\eta - \zeta)}{\sin^3 (\eta + \zeta)} + m_3 \right) \]
\[\text{auf } q'f \quad V_2 = \pm \frac{m_2 m_3}{e_1^3} \left(V 2 \sin 2 \eta \cos 2 \eta - \frac{1}{3} \right) \]

Auf \(q'p \) ist \(\eta < \zeta \), auf \(pf \) aber \(\eta > \zeta \); man hat daher
bei I 4 \(m, \mu \) auf \(q'f \)
\[V_1 > o \]
bei II 4 \(m, \mu \) auf \(q'p \)
\[V_1 \geq o, \text{ je nachdem } m_3 \geq \frac{m_2 \sin^3 (\eta - \zeta)}{\sin^3 (\eta + \zeta)} \]
\[\text{auf } pf \quad V_1 \geq o, \text{ je nachdem } m_3 \geq \frac{m_2 \sin^3 (\eta - \zeta)}{\sin^3 (\eta + \zeta)} \]

190)
Es ist nun

\[V^2 \sin 2\gamma + \cos 2\gamma - \frac{1}{3} = \begin{cases} \frac{2}{3} & \text{für } \gamma = \frac{\pi}{2} - \frac{\zeta + \lambda}{2} \\ \frac{4}{3} & \text{für } \gamma = \frac{\pi}{2} \end{cases} \]

und deshalb bei I 4 \(V_2 \geqslant o \), je nachdem \(\gamma \geqslant \frac{\pi}{2} - \frac{\zeta + \lambda}{2} \)

bei II 4 \(V_2 \leqslant o \), je nachdem \(\gamma \leqslant \frac{\pi}{2} - \frac{\zeta + \lambda}{2} \)

Nach der oben gegebenen Construction ist also

bei I 4 \(m \mu \) \(V_2 \geqslant o \) auf \(q'h_1 \)
bei I 4 \(m \mu \) \(V_2 \leqslant o \) in \(h_1'f \)
bei II 4 \(m \mu \) \(V_2 \geqslant o \) auf \(h_1'f \)
bei II 4 \(m \mu \) \(V_2 \leqslant o \) auf \(q'h_1 \)

Zwölfte Gruppe.

I 3 n v, II 3 n v, I 4 n v, II 4 n v.

Diesmal ist \(\omega_3 = \pi - \zeta \), \(\omega_2 = \zeta \), so dass die Gleichung für \(\omega_1 \) wird

\[\sin 2\omega_1 = \mp \frac{2m_1e_3^3}{3m_3e_3^3} \mp \left(\frac{3}{4} \right) \]

In Fig. 17 befindet sich der Magnet 2 in \(q' \); der Ort für den Magnet 3 ist auf \(\partial \partial' \) zu suchen. Man hat dann

\(e_1 : e_2 = \mp \sin 2\zeta : \sin (\omega_1 - \zeta) \)

- für \(\omega_1 < \zeta \), auf \(\partial'q, + \) für \(\omega_1 > \zeta \), auf \(q\partial \)

\(e_2 : e_3 = \mp \sin (\omega_1 + \zeta) : \sin (\omega_1 - \zeta) \)

- für \(\omega_1 < \zeta \) und \(\omega_1 > \zeta \), auf \(\partial'p, + \) für \(\omega_1 \) zwischen den Grenzen \(\zeta \) und \(\pi - \zeta \), auf \(p\partial \).

Dadurch geht 203) über in \(\sin 2\omega_1 \sin^3 (\omega_1 - \zeta) = \pm \frac{32m_1\sqrt{2}}{81m_3} \) auf \(\partial'q \)

\[= \pm \frac{32m_1\sqrt{2}}{81m_3} \quad \text{auf } q\partial \]
Die oberen Zeichen gehören zu den Fällen 3, die unteren zu 4.

Die Curve
\[y = \sin 2x \cdot \sin^3(x - \xi) \]
liefer
\[y = 0 \quad \text{für} \quad x = a, \frac{\pi}{2}, \pi \]
und die Extreme aus der Gleichung
\[\tan^3 x - \frac{4\tan^2 x}{\sqrt{2}} - 4\tan x + \frac{1}{\sqrt{2}} = 0 \]
woraus
\[x = \begin{cases} 90^\circ & 4^\circ 35' \\ 750^\circ 21^\circ 4^\prime & 0^\prime 1307 \quad \text{Maximum} \\ 100^\circ 50^\circ 13^\prime & 0^\prime 0268 \quad \text{Minimum} \end{cases} \]

Die Curve (Nr. 8) ist in Fig. 19 dargestellt. Man erfährt aus derselben bei den Fällen 3, dass für \(\omega_1 < \xi \), d. h. auf \(\partial q \), keine Lösung existirt, für \(\omega_1 > \xi \) aber unter der Bedingung \(\frac{32m_1\sqrt{2}}{81m_3} \leq 0.9755 \) oder \(m_3 \geq 0.5727 m_1 \), 2 Lösungen
\[\eta_2 \geq 130^\circ 50^\circ 13' \]
\[\eta_1 \geq 90^\circ 4^\circ 35' \]
entsprechend \(\partial^* \) vorhanden sind. Bei den Fällen 4 gewinnt man für \(\omega_1 < \xi \) zwei Lösungen
\[\begin{cases} \eta_1 \geq 90^\circ 4^\circ 35' \\ \eta_1 \geq 750^\circ 21^\circ 4' \end{cases} \]
entsprechend \(\partial q \), falls nur \(\frac{32m_1\sqrt{2}}{81m_3} \leq 0.0268 \) oder \(m_3 \geq 0.8619 m_1 \) und für \(\omega_1 > \xi \) zwei weitere Lösungen
\[\begin{cases} \eta_1 \geq 750^\circ 21^\circ 4' \\ \eta_1 \leq 50^\circ 13' \end{cases} \]
entsprechend \(\partial^* \), sobald \(\frac{32m_1\sqrt{2}}{81m_3} \leq 0.1307 \) oder \(m_3 \geq 4.2760 m_1 \).

Die geometrischen Orientier für den Magnet 3 sind daher bei I 3 n v und II 3 n v die Strecke \(q^* \) (Bed. \(m_3 \geq 0.5727 m_1 \)), bei I 4 n v und II 4 n v die Strecke \(\bar{q}^* \) (Bed. \(m_3 \geq 0.8619 m_1 \)) und \(\bar{q}^* \) (Bed. \(m_3 \geq 4.2760 m_1 \)).
In den Fällen I 3 und II 3 werden die Directionsmomente

\[V_1 = \frac{m_1}{e_3^3} \left(\pm \frac{m_2 \sin^3 (\gamma + \xi)}{\sin^3 (\gamma - \xi)} + m_3 \right) \]

auf \(q p \)

\[V_1 = \frac{m_1}{e_3^3} \left(\mp \frac{m_2 \sin^3 (\gamma + \xi)}{\sin^3 (\gamma - \xi)} + m_3 \right) \]

auf \(p f' \)

\[V_2 = \pm \frac{3m_2 m_3}{2 e_3^3} \left(\sqrt{2} \sin 2\gamma - \cos 2\gamma + \frac{1}{3} \right) \]

Berücksichtigt man dass \(\eta \) auf \(q p \) innerhalb \(\pi - \xi \) und \(\pi \), auf \(p f' \) innerhalb \(\frac{\pi}{2} \) und \(\pi - \xi \) liegt, ferner dass

\[V_2 \sin 2\eta - \cos 2\eta + \frac{1}{3} = \begin{cases} \frac{2}{3} & \text{für } \eta = \pi - \xi \\ \frac{4}{3} & \text{für } \eta = \frac{\pi}{2} + \frac{\xi + \lambda}{2} \\ 0 & \text{für } \eta = \frac{\pi}{3} \end{cases} \]

so hat man für I 3 vν

auf \(q p \)

\[V_1 > o \text{, je nachdem } m_3 > - \frac{m_2 \sin^3 (\gamma + \xi)}{\sin^3 (\gamma - \xi)} \]

auf \(p f' \)

\[V_1 > o \text{, je nachdem } m_3 > \frac{m_2 \sin^3 (\gamma + \xi)}{\sin^3 (\gamma - \xi)} \]

auf \(q f' \)

\[V_2 > o \text{, je nachdem } \eta > \frac{\pi}{2} + \frac{\xi + \lambda}{2} \]

für II 3 vν auf \(q f' \)

\[V_2 > o \text{, je nachdem } \eta > \frac{\pi}{2} + \frac{\xi + \lambda}{2} \]

Gemäß den Constructionen bei der elften Gruppe hat man dann auch

für I 3 vν

\[\begin{cases} V_2 > o \text{ auf } h'f' \\ \Rightarrow o \text{ in } h' \\ < o \text{ auf } q h' \end{cases} \]

für II 3 vν

\[\begin{cases} V_2 > o \text{ auf } q h' \\ \Rightarrow o \text{ in } h' \\ < o \text{ auf } k f' \end{cases} \]

Nouv. Memoires Tome XIV.
In den Fällen I 4 und II 4 erhält man für die Directionsmomente

\[V_1 = \frac{m_1}{c_2^3} \left(\pm \frac{m_2 \sin^3 (\gamma + \zeta)}{\sin^3 (\gamma - \zeta)} - m_3 \right) \]

\[V_2 = \frac{m_1 V^2}{c_2^3} \left(\mp \frac{m_2 \sin^3 (\gamma + \zeta)}{\sin^3 (\gamma - \zeta)} - m_3 \right) \]

auf \(\partial' \partial' \) und \(\partial' \partial \) \begin{align*}
V_1 &= \mp \frac{3 m_2 m_3}{2 c_2^3} \left(V_2 \sin 2 \gamma - \cos 2 \gamma + \frac{1}{3} \right)
\end{align*}

Berücksichtigt man, dass \(\gamma \) auf \(\partial' \partial' \) die Grenzen \(0 \) und \(\zeta \), auf \(\partial' \partial ' \) aber \(\zeta \) und \(\frac{\pi}{2} \) hat, ferner, dass

\[V_2 \sin 2 \gamma - \cos 2 \gamma + \frac{1}{3} = \begin{pmatrix} 4 \\ 3 \\ 2/3 \\ 4/3 \\ 4/3 \end{pmatrix} \text{ für } \gamma = \begin{pmatrix} \zeta \\ \zeta - \lambda \\ \frac{\pi}{2} \\ \zeta \end{pmatrix} \]

so hat man für I 4 u. v. auf \(\partial' \partial' \) \begin{align*}
V_1 &< o \\
V_2 &\geq o, \text{ je nachdem } \gamma \leq \zeta - \lambda \\
\end{align*}

auf \(\partial' \partial \) \begin{align*}
V_1 &< o \\
V_2 &\geq o, \text{ je nachdem } m_3 \leq - \frac{m_2 \sin^3 (\gamma + \zeta)}{\sin^3 (\gamma - \zeta)} \\
\end{align*}

für II 4 u. v. auf \(\partial' \partial' \) \begin{align*}
V_1 &\leq o, \text{ je nachdem } m_3 \leq - \frac{m_2 \sin^3 (\gamma + \zeta)}{\sin^3 (\gamma - \zeta)} \\
\end{align*}

auf \(\partial' \partial \) \begin{align*}
V_1 &\leq o, \text{ je nachdem } m_3 \leq \frac{m_2 \sin^3 (\gamma + \zeta)}{\sin^3 (\gamma - \zeta)} \\
\end{align*}

auf \(\partial' \partial' \) \begin{align*}
V_2 &\geq o \\
\end{align*}

oder auch gemäß den früher gegebenen Constructionen

für I 4 u. v.

\[V_2 \begin{cases}
\geq o & \text{auf } \partial' \partial' \\
= o & \text{in } \partial' \partial' \\
< o & \text{auf } \partial' \partial' \text{ und } \partial' \partial \end{cases} \]

für II 4 u. v.

\[V_2 \begin{cases}
\geq o & \text{auf } \partial' \partial' \text{ und } \partial' \partial \end{cases} \]

oder auch gemäß den früher gegebenen Constructionen

\[V_2 \begin{cases}
\geq o & \text{auf } \partial' \partial' \text{ und } \partial' \partial \end{cases} \]
Die Gruppen, welche den Combinationen \(n \nu \) und \(n \mu \) entsprechen, führen wieder auf den Fall, dass die Centra der drei Magnete in einer Geraden liegen, oder

\[
\omega_1 = \omega_2 = \omega_3,
\]

und fallen deshalb ganz aus.

Es kann nicht unbemerkt geblieben sein, dass die zweite Hälfte der Gruppen sich auf die erste zurückführen liesse, und zwar Gruppe 7 und 8 auf 3 und 4, 9 und 10 auf 1 und 2, 11 und 12 auf 6 und 7, wenn man nur bei der zweiten Hälfte vom Magnet 2 statt, wie in der ersten; vom Magnet 1 ausginge; man müsste dann aber auch den Magnet 1 die Richtung 8 annehmen lassen, und die Bestimmung der Directions-momente müsste deshalb doch von neuem erfolgen. Dieser Umstand bewog mich die zweite Hälfte der Gruppen ebenso zu untersuchen, wie die erste.

Im Vorstehenden sind alle Fälle, welche bei den von mir gemachten Voraus- setzungen sich einer einfachen Behandlung zugängig zeigen, erschöpft. Ich setzte vorans, dass sich der Magnet 1 im Meridian, das Nordende nach N gekehrt, befinde, während der Magnet 2 normal zum Meridian (nach E oder W) und der feste Magnet 3 entweder im Meridian (nach N oder S) oder normal dazu (nach E oder W) liegt; es ist mit anderen Worten über die \(\alpha \) disponirt. Sollten die auf die Magnete 1 und 2 ausgeübten Drehungsmomente verschwinden, so erhält man 2 Gleichungen für die Grössen \(\omega \), derart dass über eine dieser Grössen noch verfügt werden kann, und meine Methode bestand stets in einer solchen Wahl für \(\omega_3 \), dass die eine der übrigbleibenden Unbekannten direct, die andre aus einer ohne grosse Mühe durch Näherrungsmethoden (regula falsi) auflösbare Gleichung fünften Grades gewonnen werden kann. Im praktischen Falle wird man mit Hilfe der Curven Nr. 1 bis 8 sehr leicht angenäherte Auflösungen finden. Dabei sind die drei magnetischen Momente immer willkürlich, nur darf \(n_3 \) nicht unter gewisse, durch den besonderen Fall jedesmal bestimmte Grenzwerthe herabsinken. Ich glaube nicht, dass es, so lange man die Unbestimmtheit der magnetischen Momente festhält, möglich sein wird, andere eben so einfache Fälle, wie die von mir untersuchten 48, ausfindig zu machen. Schon früher, S. 212, habe ich angegeben, dass ich mir den Magnet 2 immer östlich von dem durch 1 gehenden Meridian gelegen denke, und dass die Fälle der westlichen Lage stets sofort auf die der östlichen zurückführbar sind. In jedem einzelnen Falle liefert meine Untersuchung auch die praktisch wichtigen Directionsmomente.

Der bequemeren Uebersicht wegen gebe ich eine tabellarische Zusammenstellung aller 48 Fälle.
<table>
<thead>
<tr>
<th>Fall.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 1 aα</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>ω2</td>
<td>ω1</td>
<td></td>
</tr>
<tr>
<td>II 1 aα</td>
<td>N</td>
<td>W</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 2 aα</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 2 aα</td>
<td>N</td>
<td>W</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 1 bα</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 1 bα</td>
<td>N</td>
<td>W</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 2 bα</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 2 bα</td>
<td>N</td>
<td>W</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 1 aβ</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 1 aβ</td>
<td>N</td>
<td>W</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 2 aβ</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 2 aβ</td>
<td>N</td>
<td>W</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 1 bβ</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 1 bβ</td>
<td>N</td>
<td>W</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 2 bβ</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 2 bβ</td>
<td>N</td>
<td>W</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>π − ϵ</td>
<td>0</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>I 1 cγ</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>ω2</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 2 cγ</td>
<td>N</td>
<td>W</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>π + ϵ, < π</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2 cγ</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>ω2</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 1 cγ</td>
<td>N</td>
<td>W</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>π + ϵ, < π</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 1 dδ</td>
<td>N</td>
<td>E</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>ω2</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 2 dδ</td>
<td>N</td>
<td>W</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>π + ϵ, < π</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I 2 dδ</td>
<td>N</td>
<td>E</td>
<td>S</td>
<td>V</td>
<td>V</td>
<td>ω3</td>
<td>ω2</td>
<td>π + ϵ, < π</td>
<td></td>
</tr>
<tr>
<td>II 1 dδ</td>
<td>N</td>
<td>W</td>
<td>N</td>
<td>V</td>
<td>V</td>
<td>π + ϵ, < π</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle I.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ef</td>
<td>$\sin^3 \omega_1 (3 \sin^2 \omega_1 - 2) = \frac{m_1}{3m_3 \sqrt{3}}$</td>
<td>$m_3 > \frac{m_1}{3\sqrt{3}}$</td>
</tr>
<tr>
<td></td>
<td>$d'e$</td>
<td>$\frac{m_1}{3m_3 \sqrt{3}}$</td>
<td>$m_3 = \frac{25}{24} \sqrt{\frac{5}{6} m_1}$</td>
</tr>
<tr>
<td></td>
<td>fd</td>
<td>$\frac{m_1}{3m_3 \sqrt{3}}$</td>
<td>$m_3 > \frac{m_1}{3\sqrt{3}}$</td>
</tr>
<tr>
<td></td>
<td>ef'</td>
<td>$\frac{m_1}{3m_3 \sqrt{3}}$</td>
<td>$m_3 > \frac{m_1}{3\sqrt{3}}$</td>
</tr>
<tr>
<td></td>
<td>$f'd'$</td>
<td>$\frac{m_1}{3m_3 \sqrt{3}}$</td>
<td>$m_3 > \frac{m_1}{3\sqrt{3}}$</td>
</tr>
<tr>
<td>8</td>
<td>$d'e$</td>
<td>$\cos^3 \omega_1 (1 - 3 \cos^2 \omega_1) = \pm \frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 > \frac{25}{3} \sqrt{10 \frac{3}{m_1}}$</td>
</tr>
<tr>
<td></td>
<td>fd</td>
<td>$\pm \frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 > \frac{25}{3} \sqrt{10 \frac{3}{m_1}}$</td>
</tr>
<tr>
<td></td>
<td>eg</td>
<td>$\frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 = \frac{m_1}{3} \sqrt{\frac{2}{3}}$</td>
</tr>
<tr>
<td></td>
<td>gf</td>
<td>$\frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 = \frac{m_1}{3} \sqrt{\frac{2}{3}}$</td>
</tr>
<tr>
<td></td>
<td>$d'e$</td>
<td>$\pm \frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 > \frac{25}{3} \sqrt{10 \frac{3}{m_1}}$</td>
</tr>
<tr>
<td></td>
<td>fd</td>
<td>$\pm \frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 > \frac{25}{3} \sqrt{10 \frac{3}{m_1}}$</td>
</tr>
<tr>
<td></td>
<td>eg</td>
<td>$\frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 = \frac{m_1}{3} \sqrt{\frac{2}{3}}$</td>
</tr>
<tr>
<td></td>
<td>gf</td>
<td>$\frac{2m_1}{3m_3 \sqrt{2}}$</td>
<td>$m_3 = \frac{m_1}{3} \sqrt{\frac{2}{3}}$</td>
</tr>
<tr>
<td>10</td>
<td>$d'e$</td>
<td>$\sin 2\omega_2 \cos^3(\omega_2 - \zeta) = \pm \frac{32m_2 \sqrt{2}}{81m_3}$</td>
<td>$m_3 > 20.8619 m_2$</td>
</tr>
<tr>
<td></td>
<td>fd</td>
<td>$\frac{32m_2 \sqrt{2}}{81m_3}$</td>
<td>$m_3 > 4.2760 m_2$</td>
</tr>
<tr>
<td></td>
<td>ef</td>
<td>$\frac{32m_2 \sqrt{2}}{81m_3}$</td>
<td>$m_3 > 0.5727 m_2$</td>
</tr>
<tr>
<td></td>
<td>ef'</td>
<td>$\frac{32m_2 \sqrt{2}}{81m_3}$</td>
<td>$m_3 > 0.5727 m_2$</td>
</tr>
<tr>
<td></td>
<td>de</td>
<td>$\pm \frac{32m_2 \sqrt{2}}{81m_3}$</td>
<td>$m_3 > 20.8619 m_2$</td>
</tr>
<tr>
<td></td>
<td>fd</td>
<td>$\frac{32m_2 \sqrt{2}}{81m_3}$</td>
<td>$m_3 > 4.2760 m_2$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Fall.</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>13 k x</td>
<td>N</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>14 k x</td>
<td>N</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>13 l x</td>
<td>N</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>14 l x</td>
<td>N</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>13 m x</td>
<td>N</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>14 m x</td>
<td>N</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>13 s x</td>
<td>N</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>13 a x</td>
<td>N</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

Tabelle 2.
<table>
<thead>
<tr>
<th>Figur</th>
<th>Geom. Ort</th>
<th>Aufzulösende Gleichung</th>
<th>Bedingung für reale Wurzeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>(\sin^3 \omega_2 (3 \sin^2 \omega_2 - 1) = -\frac{2m_2}{3m_3} \sqrt{\frac{2}{3}})</td>
<td>(m_3 > \frac{25}{3} \sqrt{\frac{10}{3m_2}})</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>(\quad)</td>
<td>(m_3 > \frac{m_2}{3} \sqrt{\frac{2}{3}})</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > \frac{25}{3} \sqrt{\frac{10}{3m_2}})</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>(\cos^3 \omega_2 (2 - 3 \cos^2 \omega_2) = \pm \frac{m_2}{3m_3 \sqrt{3}})</td>
<td>(m_3 > \frac{m_2}{3 \sqrt{3}})</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > \frac{25}{24} \sqrt{\frac{5}{6m_2}})</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > \frac{m_2}{3 \sqrt{3}})</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > \frac{25}{24} \sqrt{\frac{5}{6m_2}})</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>(\sin 2\omega_1 \sin^3 (\omega_1 + \xi) = \pm \frac{32m_1 \sqrt{2}}{81m_3})</td>
<td>(m_3 > 20.8619 m_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > 4.2760 m_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > 0.5727 m_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > 0.5727 m_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > 20.8619 m_1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\text{etc.})</td>
<td>(m_3 > 4.2760 m_1)</td>
</tr>
</tbody>
</table>
Die erste Rubrik enthält die Bezeichnung der einzelnen Fälle; in den drei folgenden mit den Ueberschriften 1, 2, 3 sind die magnetischen Himmelsrichtungen angegeben, nach denen die Nordpole der drei Magnete zeigen; dann kommen die Rubriken für die Directionsmomente, bei welchen ich mich, unter Weglassung der Ziffer a, begnügt habe anzugeben, ob sie $> o$, $< o$ oder nach den besonderen Werthen der Momente $> o$ und $< o$ sind. Die drei nächsten Rubriken bringen die Winkel ω der Centralen e mit dem Meridian; die beiden folgenden enthalten den Nachweis der Figuren, wie der geometrischen Oerter des Compensationsmagnets; die beiden letzten Rubriken endlich geben die Gleichung, aus welcher der letzte unbekannte Winkel ω zu bestimmen ist, und die Bedingungen, unter welchen allein reale Auflösungen jener Gleichung vorhanden sind. Ich bemerke noch, dass die doppelten Vorzeichen in Rubrik 12 mit den doppelten Zeilen in Rubrik 8, 9, 11, 13 correspondiren, nicht aber mit den Doppelzeilen in den Rubriken 1 bis 6; bei diesen gilt vielmehr der Inhalt der übrigen Rubriken für die obere, wie für die untere Zeile.

In Fig. 20 habe ich zur Uebersicht die Verhältnisse im allgemeinen nochmals graphisch dargestellt. Bei fester Lage des Magnets 1 in p kann der Magnet 2 nach q, q', q_1, q_1' versetzt werden, und der Compensationsmagnet hat, je nach den Verhältnissen der magnetischen Momente und dem für Magnet 2 gewählten Platz, seine Stelle auf einer bestimmten von all den Geraden, die in der Figur gezeichnet sind. Trägt man, was in der Figur nicht geschehen, auf diesen Geraden noch die Punkte ein, welche die einzelnen Fälle abgrenzen, sowie die von mir stets durch den Buchstabe h bezeichneten, das Verschwinden eines Directionsmomentes charakterisirenden Punkte, so sind verwandtschaftliche Beziehungen zwischen den einzelnen Gruppen von Fällen leicht erkennbar.

Handelt es sich bei der Compensirung nur um die Aufhebung der Drehungsmomente ohne Berücksichtigung der Directionsmomente, so ist durch die vorliegende Untersuchung eine grosse Mannigfaltigkeit von Lösungen jener Aufgabe ermittelt. Praktisch brauchbar sind indessen keineswegs alle, da man in der Praxis alle die Fälle wird ausschliessen müssen, in welchen m_3 gegenüber m_1 oder m_2 allzu gross ausfällt, also Fälle wie $1 1 a \beta$, $1 1 a \alpha$, $1 1 b \beta$, $1 1 b \beta$, theilweise $1 1 c \gamma$ u. s. f. Man wird ausserdem darauf Rücksicht zu nehmen haben, dass die drei Centralen eine ausreichende Grösse erhalten, damit die Voraussetzung 3) S. 206 erfüllt werde. Dabei kommt der Umstand zu statten, dass die geometrischen Oerter für die erste Hälfte einer jeden Gruppe auf der betreffen den Geraden diejenigen Thiele ausschliessen, welche für die zweite Hälfte geometrische Oerter sind. Als die vorteilhaftesten Fälle dürfen im allgemeinen diejenigen bezeichnet werden, bei welchen die untere Grenze für m_3 sehr niedrig ist, weil die Compensirung dann mit verhältnissmassig schwachen Magneten ausführbar ist. Solche Fälle sind $1 1 a \alpha$, $1 1 a \alpha$, $1 2 a \beta$, $1 1 d \beta$ u. s. f.
C. Discussion von praktisch wichtigen Specialfällen.

Von ganz besonderer Wichtigkeit sind die Fälle, in denen ein Verschwinden der beiden Directionsmomente \(V_1 \) und \(V_2 \) möglich ist, weil hiermit erreicht werden kann, dass die Magnete 1 und 2 gegenüber den Einwirkungen des Erdmagnetismus sich so verhalten, als seien die Magnete 2 und 3, resp. 1 und 3 gar nicht vorhanden. Aus den Tabellen 1 und 2 findet man jene Fälle leicht heraus, es sind diejenigen, bei denen sowohl \(V_1 \) als \(V_2 \) \(\leq 0 \). Nun ist freilich die Unabhängigkeit der magnetischen Momente von einander völlig aufgegeben. Diese merkwürdigen Fälle will ich im folgenden näher untersuchen, wobei die Momente \(m_2 \) und \(m_3 \) durch \(m_1 \), die Centralen (13) oder \(e_2 \) und (23) oder \(e_1 \) durch (12) oder \(e_3 \) ausgedrückt werden sollen. Die Fälle selbst mögen als Hauptfälle bezeichnet werden.

Hauptfall 1 = II 1 a a.

Die Stellung der Magnete ist NWN; zu benutzen ist Fig. 6.

Aus den Untersuchungen S. 218 u. flgd. ergibt sich

\[
\omega_1 = \pi - 2 \xi \\
\omega_2 = 0 \\
\omega_3 = \xi
\]

Die Centra bilden das Dreieck \(pqh \), und zwar liegt, was ich nur diesmal hervorhebe, Magnet 1 in \(p \) gen N., Magnet 2 in \(q \) gen W., Magnet 3 in \(h \) gen N. gekehrt.

\[
pq = e_3 \\
qh = e_1 \\
hp = e_2
\]

\[
e_1 = \frac{e_3 \sin \xi}{\sin 2 \xi} = \frac{e_3}{2} \sqrt{\frac{3}{2}} = 0.6124 e_3
\]

\[
e_2 = \frac{5 e_3 \sin 3 \xi}{\sin 2 \xi} = \frac{5 e_3}{2 \sqrt{6}} = 1.0206 e_3
\]

Aus den a. a. O. gegebenen Gleichungen 48) und 51) a findet man dann leicht

\[
m_2 = \frac{m_1 \sqrt{2}}{3 \sqrt{3} \sin^3 3 \xi (3 \sin^2 2 \xi - 2)} = \frac{81 \sqrt{2}}{250} m_1 = 0.4582 m_1
\]

\[
m_3 = \frac{m_1}{3 \sqrt{3} \sin^3 2 \xi (3 \sin^2 2 \xi - 2)} = \frac{27}{32 \sqrt{6}} m_1 = 0.3445 m_1
\]
Hauptfall 2 = \textit{I} \textit{I} \, b \, \beta.

Stellung NEN; Fig. 6; S. 223.

\[\omega_1 = 2 \zeta \quad \omega_2 = \omega \quad \omega_3 = \pi - \zeta \]

Die Centra bilden das Dreieck \(pq'h' \), die Werthe für \(e \) und \(m \) sind dieselben, wie bei Hauptfall 1.

Hauptfall 3 = \textit{I} \textit{I} \, a \, \beta.

Stellung NEN, Fig. 8; Seite 225.

\[\omega_1 = \pi - 2 \zeta \quad \omega_2 = \frac{\pi}{2} \quad \omega_3 = \zeta \]

Die Centra bilden das Dreieck \(pq'h \), woraus man erhält [78) und 83)]

\[e_1 = \frac{c_3 \cos \zeta}{\cos 2 \zeta} = e_3 \sqrt{3} = 2 \cdot 4495 \, e_3 \]

\[e_2 = \frac{c_3 \sin 3 \zeta}{\cos 2 \zeta} = \frac{5e_3}{\sqrt{3}} = 2 \cdot 8868 \, e_3 \quad \text{(217)} \]

Ferner \[m_2 = \frac{2m_1}{3 \sqrt{3} \sin^3 3 \zeta (1 - 3 \cos^2 2 \zeta)} = \frac{81m_1}{125} = 0 \cdot 6480 \, m_1 \]

\[m_3 = \frac{2m_1 \sqrt{2}}{3 \sqrt{3} \cos 3 \zeta (1 - 3 \cos^2 2 \zeta)} = \frac{25m_1 \sqrt{6}}{12} = 22 \cdot 0454 \, m_1 \]

Hauptfall 4 = \textit{I} \textit{I} \, b \, \beta.

Stellung NWN, Fig. 8; S. 229.

\[\omega_1 = 2 \zeta \quad \omega_2 = \frac{\pi}{2} \quad \omega_3 = \pi - \zeta \]

Die Centra bilden das Dreieck \(pq'h' \), die Werthe für \(e \) und \(m \) sind dieselben, wie bei Hauptfall 3.

Hauptfall 5 = \textit{I} \textit{I} \, c \, \beta.

Stellung NEN, Fig. 10; S. 233.

\[\omega_1 = \frac{\pi}{2} + \zeta \quad \omega_2 = \frac{\pi}{2} + \frac{\zeta - \lambda}{2} \quad \omega_3 = \frac{\pi}{2} - \zeta \]

Die Centra bilden das Dreieck \(pq'h \), und man findet [S. 215, 110) und 118)]
\[e_1 = \frac{3 \zeta - \lambda}{\sin \frac{\zeta + \lambda}{2}} = \frac{e_3}{3} \sqrt{17 + 4 \sqrt{13}} = 1.8685 \, e_3 \]

\[e_2 = \frac{e_3 \sin 2 \zeta}{\sin \frac{\zeta + \lambda}{2}} = e_3 \sqrt{\frac{10 + 2 \sqrt{13}}{3}} = 2.3952 \, e_3 \]

\[m_2 = \frac{81 m_1 \sin (\zeta - \lambda) \sin^3 \left(\frac{3 \zeta - \lambda}{2} \right)}{32 \sqrt{2}} = \frac{m_1}{72} \sqrt{\frac{929 + 109 \sqrt{13}}{3}} = 0.2916 m_1 \]

\[m_3 = \frac{m_1 \sin^3 \left(\frac{3 \zeta - \lambda}{2} \right)}{\sin^3 \left(\frac{\zeta + \lambda}{2} \right)} = \frac{m_1}{27} \sqrt{\frac{15521 + 4300 \sqrt{13}}{13}} = 6.5237 m_1 \]

Hauptfall 6 = II 1 e r.

Stellung NWN, Fig. 10; S. 233.

\[\omega_1 = \frac{\pi}{2} + \zeta, \quad \omega_2 = \frac{\zeta + \lambda}{2}, \quad \omega_3 = \frac{\pi}{2} - \zeta. \]

Die Centra bilden das Dreieck \(pq k', \) und man erhält [S. 215 113) und 124)]

\[e_1 = \frac{3 \zeta - \lambda}{\cos \frac{\zeta - \lambda}{2}} = \frac{e_3}{3} \sqrt{17 - 4 \sqrt{13}} = 0.5352 \, e_3 \]

\[e_2 = \frac{e_3 \sin 2 \zeta}{\cos \frac{\zeta - \lambda}{2}} = e_3 \sqrt{\frac{10 - 2 \sqrt{13}}{3}} = 0.9642 \, e_3 \]

\[m_2 = \frac{81 m_1 \sin (\zeta + \lambda) \cos^3 \left(\frac{3 \zeta + \lambda}{2} \right)}{32 \sqrt{2}} = \frac{m_1}{72} \sqrt{\frac{929 - 109 \sqrt{13}}{3}} = 0.1856 m_1 \]

\[m_3 = \frac{m_1 \cos^3 \left(\frac{3 \zeta + \lambda}{2} \right)}{\cos^3 \left(\frac{\zeta - \lambda}{2} \right)} = \frac{m_1}{27} \sqrt{\frac{15521 - 4300 \sqrt{13}}{13}} = 0.1533 m_1 \]
Hauptfall 7 = 11 d δ.

Stellung NEN, Fig. 10; S. 238.

\[\omega_1 = \frac{\pi}{2} - \zeta \quad \omega_2 = \frac{\pi}{2} - \frac{\zeta + \lambda}{2} \quad \omega_3 = \frac{\pi}{2} + \zeta \]

Die Centra bilden das Dreieck $pq'h'$, die Werthe für e und m sind dieselben, wie bei Hauptfall 6.

Hauptfall 8 = 11 d δ.

Stellung NWN, Fig. 10; S. 238.

\[\omega_1 = \frac{\pi}{2} - \zeta \quad \omega_2 = \frac{\pi}{2} - \frac{\zeta - \lambda}{2} \quad \omega_3 = \frac{\pi}{2} + \zeta \]

Die Centra bilden das Dreieck $pq'h'$, die Werthe für e und m sind dieselben, wie bei Hauptfall 5.

Hauptfall 9 = 13 kx.

Stellung NEE, Fig. 13; S. 243.

\[\omega_1 = 0 \quad \omega_2 = \frac{\pi}{2} + 2\zeta \quad \omega_3 = \frac{\pi}{2} - \zeta \]

Die Centra bilden das Dreieck $pq'h'$, und man erhält [143) und 151)]

\[e_1 = \frac{e_3 \sin 3\zeta}{\cos 2\zeta} = \frac{5e_3}{\sqrt{3}} = 2.8868 e_3 \]

\[e_2 = \frac{e_3 \cos \zeta}{\cos 2\zeta} = e_3 \sqrt{6} = 2.4495 e_3 \]

\[m_2 = \frac{3m}{2} \sqrt{3} \sin^3 3\zeta (3 \cos^2 2\zeta - 1) = \frac{125}{81} m_1 = 1.5432 m_1 \]

\[m_3 = \frac{m_1 m}{\cos^3 2\zeta} = \frac{125}{3} m_1 \sqrt{\frac{2}{3}} = 34.0207 m_1 \]

Hauptfall 10 = 14 l x.

Stellung NWW, Fig. 13, S. 246.

\[\omega_1 = 0, \quad \omega_2 = \frac{\pi}{2} - 2\zeta \quad \omega_3 = \frac{\pi}{2} + \zeta \]

Die Centra bilden das Dreieck $pq'h'$; die Werthe für e und m sind dieselben, wie bei Hauptfall 9.
Hauptfall 11 = 114 k λ.

Stellung NWW, Fig. 15, S. 249.

\[\omega_1 = \frac{\pi}{2}, \quad \omega_2 = \frac{\pi}{2} + 2\zeta, \quad \omega_3 = \frac{\pi}{2} - \zeta \]

Die Centra bilden das Dreieck pqk, und man erhält [165) und 174)].

\[e_1 = \frac{e_3 \sin 3\zeta}{\sin 2\zeta} = \frac{5e_3}{2\sqrt{6}} = 1.0206 \, e_3 \]

\[e_2 = \frac{e_3 \sin \zeta}{\sin 2\zeta} = \frac{e_3}{2} \sqrt{\frac{3}{2}} = 0.6124 \, e_3 \]

\[m_2 = \frac{3m_1 \sqrt{3 \sin^3 3\zeta (2 - 3 \sin^2 2\zeta)}}{2} = \frac{125 m_1 \sqrt{2}}{81} = 2.1824 \, m_1 \]

\[m_3 = \frac{m_1 \sin^3 3\zeta}{\sqrt{2.32\sin^3 2\zeta}} = \frac{125 m_1}{96 \sqrt{3}} = 0.7518 \, m_1 \]

Hauptfall 12 = 13 l λ.

Stellung NEE, Fig. 15, S. 252.

\[\omega_1 = \frac{\pi}{2}, \quad \omega_2 = \frac{\pi}{2} - 2\zeta, \quad \omega_3 = \frac{\pi}{2} + \zeta \]

Die Centra bilden das Dreieck pqk'; die Werthe für m und e sind dieselben, wie bei Hauptfall 11.

Hauptfall 13 = 13 m p.

Stellung NEE, Fig. 17, S. 255.

\[\omega_1 = \pi - \frac{\zeta - \lambda}{2}, \quad \omega_2 = \pi - \zeta, \quad \omega_3 = \zeta \]

Die Centra bilden das Dreieck pqk, und man erhält [S. 215 190) und 194)].

\[e_1 = e_3 \sin 2\zeta \frac{\zeta + \lambda}{\sin \frac{\zeta + \lambda}{2}} = e_3 \sqrt{\frac{10 + 2\sqrt{13}}{3}} = 2.3952 \, e_3 \]

\[e_2 = e_3 \sin 3\frac{\zeta - \lambda}{\sin \frac{\zeta + \lambda}{2}} = e_3 \frac{3}{3} \sqrt{17 + 4\sqrt{13}} = 1.8685 \, e_3 \]
\[m_2 = \frac{32 m_1 \sqrt{2}}{81 \sin (\zeta - \lambda) \sin^3 \left(\frac{3 \zeta - \lambda}{2} \right)} = \frac{4 m_1}{27} \sqrt{929 - 109 \sqrt{13}} = 3.4299 m_1 \]
\[m_3 = \frac{32 m_1 \sqrt{2}}{81 \sin (\zeta - \lambda) \sin^3 \left(\frac{\zeta + \lambda}{2} \right)} = \frac{4 m_1}{27} \sqrt{47 - 13 \sqrt{13}} = 22.3755 m_1 \]

Hauptfall 14 = II 4 m μ.

Stellung NWW, Fig. 17; S. 255.
\[\omega_1 = \frac{\pi}{2} - \frac{\zeta + \lambda}{2} \quad \omega_2 = \pi - \zeta \quad \omega_3 = \zeta \]

Die Centra bilden das Dreieck \(pqh_1 \), und man hat [S. 215, 190 und 199]
\[e_1 = e_3 \sin \frac{2 \zeta}{\zeta - \lambda} = \frac{e_3}{\cos \frac{2}{\zeta - \lambda}} = \frac{e_3}{\cos \frac{3 \zeta + \lambda}{2}} \]
\[e_2 = \frac{\cos \frac{2}{\zeta - \lambda}}{\sin \frac{3 \zeta + \lambda}{2}} \]
\[e_3 = 0.9642 e_3 \]

Hauptfall 15 = I 3 n v.

Stellung NEE, Fig. 17; S. 259.
\[\omega_1 = \frac{\pi}{2} + \frac{\zeta + \lambda}{2} \quad \omega_2 = \zeta \quad \omega_3 = \pi - \zeta \]

Die Centra bilden das Dreieck \(pq'h' \), und die Werthe für \(m \) und \(e \) sind dieselben, wie bei Hauptfall 14.
Hauptfall 16 = II 4 n v.

Stellung NWW. Fig. 17; S. 259.

\[\omega_1 = \frac{\zeta - \lambda}{2} \quad \omega_2 = \zeta \quad \omega_3 = \pi - \zeta \]

Die Centra bilden das Dreieck \(p q h \), die Werthe für \(m \) und \(e \) sind dieselben, wie bei Hauptfall 13.

Man erkennt sofort, dass im wesentlichen die Fälle 9 und 10 auf 3, 11 und 12 auf 1, 13 und 16 auf 5, 14 und 15 auf 6 zurückkommen. Der praktische Werth der 16 Hauptfälle ist ein sehr verschiedenartiger: man wird wegen der Grösse der Momente \(m_2 \) oder \(m_3 \) gegenüber \(m_1 \) die Hälfte der Fälle als praktisch unbranchbar bezeichnen müssen, so dass eigentliche Berücksichtigung nur folgende 8 Hauptfälle verdienen, welche sich im wesentlichen auf 2 zurückführen lassen.

Tabelle 3.

<table>
<thead>
<tr>
<th>H.F.</th>
<th>Stellung</th>
<th>Fig.</th>
<th>Dreieck.</th>
<th>(m_2 = m_1 \times m_3 = m_1 \times)</th>
<th>(e_1 = e_3 \times)</th>
<th>(e_2 = e_3 \times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NWW</td>
<td>6</td>
<td>(p q h)</td>
<td>0.4582</td>
<td>0.3445</td>
<td>0.6124</td>
</tr>
<tr>
<td>2</td>
<td>NEY</td>
<td></td>
<td>(p q h')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NWW</td>
<td>10</td>
<td>(p q h_1')</td>
<td>0.1856</td>
<td>0.1533</td>
<td>0.5352</td>
</tr>
<tr>
<td>7</td>
<td>NEY</td>
<td></td>
<td>(p q h')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>WNW</td>
<td>15</td>
<td>(p q h)</td>
<td>2.1824</td>
<td>0.7518</td>
<td>1.0206</td>
</tr>
<tr>
<td>12</td>
<td>WEE</td>
<td></td>
<td>(p q h')</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>NWW</td>
<td>17</td>
<td>(p q h_1')</td>
<td>5.3866</td>
<td>0.8257</td>
<td>0.9642</td>
</tr>
<tr>
<td>15</td>
<td>WEE</td>
<td></td>
<td>(p q h')</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Am vorteilhaftesten sind offenbar die Hauptfälle 1, 2, 11, 12.

Die einzige Schwierigkeit liegt in der Herstellung der hier gegebenen Verhältnisse zwischen den magnetischen Momenten, doch scheint sich in einer von Auerbach *) beschriebenen Methode ein geeignetes Mittel dafür darzubieten.

Die wichtigste praktische Anwendung wäre wohl bei den 3 Variationsapparaten für die erdmagnetische Kraft, nämlich Unifilar, Bifilar und Lloyd'sche Wage, zu machen. Die Stellung ist Unifilar \(N \), entsprechend Magnet 1, Bifilar \(E \) oder \(W \), entsprechend Magnet 2, Lloyd's Wage \(N \), entsprechend Compensationsmagnet 3. Man ersieht hieraus,

*) Wiedemann's Annalen 16, p. 556 u. figd. (1882).
dass nur die Hauptfälle 1, 2, 6, 7 zur Verwendung kommen können, oder eigentlich nur 1 und 2, auf welche ich mich hier beschränken will, da bei 6 und 7 die Momente \(m_2 \) und \(m_3 \) verhältnismässig klein ausfallen. Für Unifilar und Bifilar sind dann die Drehungs- und Directionsmomente völlig aufgehoben; da der Magnet der Lloyd’schen Wage nur um eine horizontale Axe schwingen kann, so üben Unifilar und Bifilar kein Drehmoment, sondern nur ein Directionsmoment aus, für welches man aus den Gleichungen 30), da

\[a_1 = 0, \quad a_2 = -\frac{\pi}{2}, \quad a_3 = 0, \quad \omega_1 = \pi - 2\pi, \quad \omega_3 = \pi \]

ist, leicht findet

\[V_3 = v_{13} + v_{23} = \frac{81 m_1^2}{125 c_3^3} \]

Dieses Directionsmoment wäre bei den an der Lloyd’schen Wage beobachteten Variationen in Rechnung zu bringen. Die drei Instrumente dürften hiernach, wenn die im Hauptfall 1 angegebenen Verhältnisse der magnetischen Momente und der Centrals ein gehalten werden, in weit geringeren Entfernungen von einander aufgestellt werden, als es bisher üblich war. Die kleinste Centrale, in unserem Falle \(c_3 \), die Centrale zwischen Bifilar und Lloyd’scher Wage, braucht nur so gross zu sein, dass der Voraussetzung 3) S. 206 genügt wird.

Die von mir gegebene Auflösung des Problems über die Aufstellung der drei Variationsapparate stimmt mit der von Lloyd angegebenen durchaus nicht überein *); die Gründe dafür und die Ursachen, weshalb ich die Lloyd’sche Lösung für unrichtig halte, habe ich in der Einleitung dargelegt. Eine den Fällen I I a a und II I a a entsprechende Lage hat Lloyd allerdings untersucht **); er stellt indessen für \(\omega_3 \) (bei ihm \(a \)) eine ganz andere Gleichung, wie ich es gethan, auf, weil seine Voraussetzungen von den meinigen fundamental verschieden sind. Am ausführlichsten ist bei Lloyd der Fall behandelt, wo die Centra der drei Magnete in einer Geraden liegen, und Lloyd wendet seine Resultate an, um Winke über die Erbauung magnetischer Observatorien zu geben ***). Jener Fall wird auch von mir beim Abschluss der ersten und zweiten Gruppenhälfte erwähnt, aber man erkennt, wie ich dort angeführt habe, dass damit die Unabhängigkeit der magnetischen Momente von einander aufgegeben wird, und eine weitere Untersuchung zeigt, dass von einem Verschwinden der Directionsmomente \(V_1 \) und \(V_2 \) im allgemeinen gar nicht die Rede sein kann. Ich unterlasse deshalb eine weitere Mitteilung darüber, obgleich die Resultate, die man unter der Voraussetzung, dass \(U_1 \) und \(U_2 \) verschwinden sollen, gewinn, theoretisch nicht uninteressant sind.

Dorpat, Juli 1882.

*) Über Lloyd’s Auflösung vergleiche man a. a. O. S. 175 und Fig. 6, Seite 252 und Fig. 1, oder auch die Mitteilungen der internationalen Polarcmission, Heft 2, Petersburg 1882, S. 33 und das Schema S. 36.

**) Lloyd a. a. O. S. 175, 176, 292.

***) Lloyd a. a. O. S. 171 u. figd.
ОБОЗРЪНІЕ

ГЕОГРАФИЧЕСКАГО РАСПРОСТРАНЕНІЯ

НѢКОТОРЫХЪ БРЕДНЫХЪ НАСЬКОМЫХЪ

РОССІИ.

собствѣ

К. Э. Линдеманъ,

профессоръ Петровской академіи.

МОСКВА.

Въ университетской типографіи (М. Катковъ),
на Спасскомъ бульварѣ.
1883.
Карта I.
Обозрение географического распространения хлебного жука (Anisoplia austriaca).
Красными чертами обозначены города и местности, близ которых присутствие A. austriaca доказано. Синими чертами обозначены города, близ которых отсутствие A. austriaca. Этот отрицательный результат получен благодаря присылке из отмеченных городов огромного количества жуков, собранных с колосьев хлебных злаков в мае, июне и июле, в течение последних трех лет. Жуки, присланные ми оттуда, оказывались всегда принадлежащими другим видам Anisoplia.

Карта II.

Карта III.
Обозрение географического распространения гессенской мухи (l'cidomyia destructor). Красными чертами обозначены города и местности, где присутствие гессенской мухи доказано.

Карта IV.
Обозрение географического распространения обыкновенного нильщика (Cephus pyrgmaens). Красными чертами обозначены города и местности где нильщик встречается. Синими чертами кром ского обозначены местности, где это насекомое причиняет большой вред.
<table>
<thead>
<tr>
<th>Tableau des Matières.</th>
<th>Pag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wehrauch, Karl. Ueber die gegenseitige Einwirkung permanenter Magnete.</td>
<td>205</td>
</tr>
<tr>
<td>Mit einer Tafel.</td>
<td></td>
</tr>
<tr>
<td>Lindemayr, K. E. Obserfliege geographischen Verbreitung einiger \</td>
<td>277</td>
</tr>
<tr>
<td>dernden Schadkäfer. (Ca. 4 kartam).</td>
<td></td>
</tr>
</tbody>
</table>